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The Fifty American States in Space and Time:
Applying Conditionally Autoregressive Models

Joshua L. Jackson & James E. Monogan III

This appendix serves several purposes. Section 1 describes to the practical researcher how
to estimate conditional autoregressive (CAR) models in OpenBUGS or in R. Most impor-
tantly, this section offers a brief tutorial for OpenBUGS, for researchers who are not familiar
with the software and wish to borrow our approach or replicate our findings. Section 2 de-
scribes an alternative algorithm for estimating a Bayesian conditional autoregressive (CAR)
model. Section 3 presents details of how the Monte Carlo experiments were conducted.
Section 4 presents an additional Monte Carlo analysis for the case when the dependent
variable is dichotomous, calling for a logistic regression. Section 5 offers an applied exam-
ple of how to use a Bayesian hierarchical CAR prior for frailty terms in an event history
analysis, with the example data being time until a state adopts a lottery. Section 6 offers
another applied example of a Bayesian hierarchical CAR model: a panel count model of
the number of Clean Air Act enforcement actions taken by the 50 states over the years
2001-2009. Section 7 estimates the Statehouse Democracy model with an alternative spa-
tial weights matrix, using ideological rather than geographical proximity. Finally, Section 8
details where our data come from. Replication information for this project is available at:
http://dx.doi.org/10.7910/DVN/ADFBT7.

1 OpenBUGS and R Tutorial

1.1 Using OpenBUGS to Estimate a CAR Model

OpenBUGS (or the similar program WinBUGS) allows a researcher to implement a CAR
error structure with the car.normal command. OpenBUGS makes Bayesian estimation
using a weights matrix a fairly easy thing to do, but we realize that not all researchers
are familiar with the program. Here, we offer a tutorial on OpenBUGS to show interested
researchers how to use the software, and to facilitate replication of these results for those
not familiar with OpenBUGS. Below is the OpenBUGS script for replicating the Statehouse
Democracy model in Erikson, Wright and McIver (1993: 129). This is also available for
download from our Dataverse page.
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#MODEL

model {

for (i in 1:N) {

#Distributional assumption of each outcome

aveelite[i] ~ dnorm(muAveelite[i],tau.h[1])

pid[i] ~ dnorm(muPid[i],tau.h[2])

demstr[i] ~ dnorm(muDemstr[i],tau.h[3])

legideol[i] ~ dnorm(muLegideol[i],tau.h[4])

policyli[i] ~ dnorm(muPolicyli[i],tau.h[5])

#No constants: All variables are standardized

muAveelite[i] <- beta[1]*ideol[i]

muPid[i] <- beta[2]*ideol[i]+ beta[3]*aveelite[i]

muDemstr[i] <- beta[4]*ideol[i]+beta[5]*aveelite[i]+beta[6]*pid[i]

muLegideol[i] <- beta[7]*aveelite[i]+beta[8]*demstr[i]

muPolicyli[i] <- beta[9]*ideol[i]+beta[10]*demstr[i]+beta[11]*legideol[i]

#Dump variables not used in model

irrelevant[i]<-ID[i]

}

#Priors on coefficients are vague, conjugate

for (i in 1:11) {beta[i] ~ dnorm(0.0,0.001)}

#Bernardinelli et al (1995) hyperprior assuming 46 states would be

# tau.h[i] ~dgamma(4.18291,2.04522)

# tau.c~dgamma(1.0,1.0)

#For even variance between models, we lower the precision by half.

#Doing so gives an expected error variance of 0.9671807 in each model.

for (i in 1:5){

tau.h[i] ~dgamma(1.05731,1.02261)

}

# marginal SD of heterogeneity effects

for (i in 1:5){

sd.h[i] <- 1 / sqrt(tau.h[i])

}

}

#INITIAL VALUES

list(beta = c(0,0,0,0,0,0,0,0,0,0,0),
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tau.h = c(1,1,1,1,1) )

list(beta = c(.76,.83,-1.01,.15,-.24,.78,1.05,.63,.44,-.32,.48),

tau.h = c(1,1,1,1,1) )

list(beta = c(-.76,-.83,1.01,-.15,.24,-.78,-1.05,-.63,-.44,.32,-.48),

tau.h = c(1,1,1,1,1) )

#DATA (Load the list and the matrix.)

list(N=46)

ID[] ideol[] aveelite[] pid[] demstr[] legideol[] policyli[]

1 -1.167923518 -0.984030422 1.195949091 1.752288983 -0.766087461 -1.434831088

3 -0.501636682 0.378122775 -0.608210211 -1.213293001 -0.505270107 -1.036507349

4 -0.515234166 -1.094632567 1.671191012 1.664661843 -0.025076815 -1.524453822

5 1.13008644 1.172712203 -0.115366721 0.003635298 1.607283184 1.492847748

6 0.803741764 0.497456732 -1.013045951 -1.133443471 -0.362298015 0.487080529

7 1.374844915 1.271671955 0.025445743 -0.017882776 1.315371264 1.194105063

8 0.314224944 -0.055554183 -0.484999336 -0.332355221 -0.360986519 1.114440292

9 -0.352062022 -0.911265829 -0.080163605 0.532768044 -0.453300584 -0.359357208

10 -0.433648224 -1.353674547 1.715194897 1.348115348 -0.669231366 -1.026549268

12 -1.820612611 -0.957835124 -1.84911976 -1.515839891 -2.1137742 -0.857261762

13 0.59977639 0.413049781 -0.12416749 -0.479091702 0.14938833 0.417373898

14 -0.297671308 0.03467391 -0.810628086 -1.083407906 -0.681067809 -1.18587881

15 0.137454927 1.169801553 -0.907436624 -0.679752706 0.767023047 0.447248173

16 -0.188889619 0.587684811 -1.479487145 -0.954559681 -0.022941616 0.248086348

17 0.178248028 -0.56490635 1.477573852 0.649431573 -0.286020907 -0.30956674

18 -1.154325775 -1.603984786 2.445659315 1.659995153 -0.889107118 -1.026549268

19 -0.025717344 0.817620913 -0.44979622 -0.530683036 0.522819828 -0.010824015

20 1.198074898 0.747766901 1.292757671 1.242599643 1.71946065 0.855529933

21 1.864361734 1.431754115 0.949527237 1.006680563 2.14434595 1.642219091

22 0.776546407 1.292046091 -0.476198567 -0.135323881 1.265915399 1.184146863

23 0.232638743 1.265850793 0.175058934 0.013486649 1.443596725 0.795781384

24 -1.480670321 -1.831010237 0.80871494 1.656884233 -0.96062398 -1.494579577

25 -0.134498905 -0.780289548 0.025445743 0.233332229 -0.624952334 -0.538602854

26 0.463799474 -0.218546872 -0.247378375 -0.660308836 -0.608889018 0.606577656

29 0.232638743 0.541115481 -1.541092567 -1.031816726 -0.120375778 -0.130321109

30 1.510821831 1.268761444 -0.212175259 -0.087880647 1.204605403 1.343476406

31 -0.202487363 -1.013136231 0.720707087 0.061189178 -0.883814961 -0.97675886

32 1.551614931 1.22510266 0.04304728 -0.654086687 0.839803458 2.120207363

33 -0.841578972 -1.406065004 1.011132742 1.259191734 -0.321283953 -0.946884556

34 -1.643842724 0.284984116 -1.444283987 -1.428212751 -0.773990285 -0.50872855

35 0.59977639 0.311179379 -0.273780681 -0.300207912 0.235546911 0.646409982

36 -1.73902641 -1.705855188 1.17834747 0.676912193 -1.2434212 -0.966800778

37 0.898925644 1.312420227 -0.009757373 0.190814978 1.471326841 1.393266814

38 0.531787932 0.797246846 -0.335386124 -0.568533597 0.456491081 1.014859357
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39 1.687591847 0.651717661 0.456683779 1.011865533 0.890314788 0.686242368

40 -0.936762657 -1.088811405 0.36867601 1.335930343 0.058584088 -1.51449574

41 -1.303900434 -0.107944692 -0.484999336 -1.738018816 -1.564438348 -0.936926474

42 -0.284073564 -0.65804501 0.474285316 0.061448473 -0.560386038 -0.837345599

43 -1.181521262 -1.208145362 0.518289201 0.985940373 -0.127916404 -0.63818373

44 -1.834210355 -0.826858843 -2.192350026 -1.590504451 -1.894894092 -0.429063838

45 0.423006503 1.105768703 -1.109854489 -1.082370881 0.496026301 0.795781384

46 -0.460843451 -0.925818733 -0.37058924 0.661875563 -0.307844814 -0.827387458

47 1.170879541 0.637164756 0.025445743 -0.454981297 0.404776301 0.357625349

48 0.722155692 -0.585280417 1.107941322 1.007976729 0.141843308 0.128589258

49 0.545385675 1.178533365 -0.036159721 -0.065584997 1.410277576 1.23393739

50 -0.447245708 -0.512515824 -1.030647489 -1.278883786 -1.416806709 -0.687974197

END

We recommend the researcher open this script in OpenBUGS as a .txt file. There are
three primary components in this script: the model, the initial values, and the data. The
model, including all priors, is defined within a loop. The priors are listed in three lists (for
three parallel chains we elect to run). The data are in two components: a list (consisting
only of N=46 in this case) and a matrix that must end with the word END in all caps.

To get started in OpenBUGS, first select the ‘Model’ drop-down menu and select ‘speci-
fication’ to bring up the Specification Tool. Highlight the word “model” at the beginning of
the model loop (model{) and the click ‘check model’ on the Specification Tool. The banner
at the bottom of the screen should display a message saying the model is syntactically cor-
rect. Next, load the data. First, highlight the word ‘list’ under the #DATA section of the
script, and click ‘load data’ in the Specification Tool. In this model, the data list vector only
contains the sample size, N. When fitting the CAR model, this list vector will also contain
the adjacency matrix, including the weights and number of neighbors for each state. Next,
highlight ID[] and click ‘load data.’ This loads the data when it is in matrix form, although
it is possible to simply include all data in a list. After loading the data, enter the number of
chains you wish to run, between 1 and 5. We run 3 chains in our analyses. After entering
the number of chains, click ‘compile,’ and a “model compiled” message should appear at the
bottom. Next, the user may choose between loading initial values of each parameter to be
estimated, or having OpenBUGS generate initial values automatically. To load the initial
values, click on the word list at the start of an initial value list, and then click ‘load inits’
to initialize the first chain. For the second chain, click on the word list for the second list of
initial values and then click ‘load inits’ again. Repeat this process for the number of chains.
Alternatively, clicking ‘gen inits’ once will have OpenBUGS generate all initial values im-
mediately and automatically. After loading or generating initial values, “model initialized”
should appear at the bottom of the screen.
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Now select Sample Monitor Tool from the ‘Inference’ drop-down menu, and select ‘update’
from the ‘Model’ drop-down menu to bring up the Update Tool. The user should run some
iterations of the model before setting monitors on any parameters. This is known as the
burn-in period and is intended to give the model a head start toward converging. For this
example, the user may simply run the default 1000 iterations by clicking ‘update’ in the
Update Tool. (Usually, a user will want to run a longer burn-in.) A counter keeps track of
the progress as iterations are run. Now that the burn-in period is complete, the user should
set a monitor on every parameter of interest. To do this, simply type the name of every
parameter defined in the model into the ‘node’ box in the Sample Monitor Tool, typing one at
a time and clicking ‘set’ for each parameter. (It is not required that the user set a monitor on
every parameter.) After all parameters have been entered into the Sample Monitor Tool, the
user may either select one parameter from the ‘node’ drop-down menu or, as we recommend,
enter an asterisk into the ‘node’ box to monitor all parameters simultaneously. The user may
also select ‘DIC’ from the ‘Inference’ drop-down menu and click ‘set’ to obtain the model fit
post-estimation. Also, the user may change the credible intervals to 90% (from the default
95%) by highlighting 5, median, and 95 in the ‘percentiles’ menu in the Sample Monitor
Tool. With all parameters being monitored, enter 10,000 into the ‘updates’ window and
click ‘update’ to run 10,000 iterations of the model. Keep in mind that if the user is running
3 chains, then this will run 10,000 iterations per chain for a total of 30,000 iterations.

After the iterations have completed, the user can now click ‘stats’ in the Sample Monitor
Tool to get the estimates of posterior means and credible intervals for each parameter.
Clicking ‘DIC’ in the DIC Tool gives the Deviance Information Criterion to assess model
fit. Also in the Sample Monitor Tool are several tools for assessing model convergence,
including history plots, autocorrelation plots, and modified Gelman-Rubin statistics (‘brg
diag’). Alternatively, we recommend the user assess convergence using the coda output.
Click ‘coda’ in the Sample Monitor Tool. If the user is running 3 chains, 4 windows will
appear: one coda index, and one window for each chain which contains a vector of estimated
coefficient values. Save the index and each chain as .txt files, and see our Convergence Tests
R script for the most reliable way to assess convergence. The user may also refer to our
forest plots R script for an example of how to show the results using forest plots.

1.2 Using the CAR.Proper Command in R

Our recommendation is to use the CAR prior in OpenBUGS (or WinBUGS) as we just
described, as it has the most coherent error structure and fits naturally with the Gibbs
sampler estimation strategy. However, for users who prefer not to use OpenBUGS, we have
written a program in R that allows researchers to estimate a “proper CAR” model in cases
when the researcher wants to fit a linear model in a purely cross-sectional setting. This model
is “proper” because, as Section 2 explains, the joint distribution of a CAR model is not a
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proper distribution. Rather, the inverse variance-covariance matrix is singular (therefore
meaning that the variance-covariance matrix itself cannot be solved for). With a ridge-style
solution, we can force the inverse variance-covariance matrix to be nonsingular, giving us
a proper distribution. The disadvantage of this is that it implies each spatial error term is
a function of a fraction of the averages of its neighbors’ errors, which is why OpenBUGS’s
solution is ideal. That said, users who are comfortable with this ridge fix can use our
program.

Our R script entitled CARproper.R, available on our Dataverse page (http://dx.doi.
org/10.7910/DVN/ADFBT7), creates the function CAR.Proper. This function estimates
a Bayesian proper CAR model using a Metropolis-Hastings sampler. The function is struc-
tured as follows:

CAR.Proper(X, y, W, mcmc=1000, burnin=round(.1*mcmc),

beta.mean=rep(0,times=dim(X)[2]),beta.var=diag(dim(X)[2])*100,

sigma.shape=.001,sigma.rate=.001,delta.shape=.1,delta.rate=.1,

ridge=.97, initials=c(rep(.1,dim(X)[2]),1,1,rep(.1,dim(X)[1])))

In this function, three arguments must always be specified by the user:

• X is a matrix of predictors,

• y is a vector of the dependent variable, and

• W is a spatial weights matrix.

Other arguments have default values:

• mcmc is the number of MCMC samples to draw (which ought to be raised above the
1,000 default),

• burnin is the length of the burn-in sample (defaulting to 10% of the mcmc sample if a
number of iterations is not specified),

• beta.mean is a vector of the prior means of regression coefficients (which are assumed
to have a joint multivariate normal prior) that defaults to 0 for each term,

• beta.var is the variance-covariance matrix for regression coefficients in the prior (again
assumed to be multivariate normal) that defaults to independent coefficients with a
variance of 100 each,

• sigma.shape and sigma.rate are the shape and rate parameters of an inverse gamma
prior on the heterogeneous error variance that default to 0.001 each following the Best
et al. (1999) recommendation,
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• delta.shape and delta.rate are the shape and rate parameters of an inverse gamma
prior on the clustering error variance that default to 0.1 each following the Best et al.
(1999) recommendation,

• ridge is the propriety term that the spatial weight matrix is multiplied by to force the
joint distribution of observations to be multivariate normal that defaults to 0.97 (and
must be absolutely smaller than 1), and

• initials is the set of initial values for all parameters defaulting to 1 for the two
variance terms and 0.1 for all other terms. This vector first lists values for regression
coefficients, then each of the two variance terms, and finally all of the clustered error
terms.

As an applied example of this function, the following lines of code estimate a proper
CAR model for the last stage of the Erikson, Wright and McIver (1993) model, with policy
liberalism as the dependent variable, and then summarizes the results:

ewm.5<-CAR.Proper(X=cbind(ewm$ideol,ewm$demstr,ewm$legideol),

y=ewm$policyli, W=ewm.W, mcmc=100000,

beta.mean=c(.44,-.32,.48),

beta.var=diag(c(1/69.444,1/204.081,1/69.444)))

summary(ewm.5)

Here the term X=cbind(ewm$ideol,ewm$demstr,ewm$legideol) references a loaded data
frame named ewm and binds the necessary predictor variables into a matrix. Because this is a
standardized regression, a constant is omitted, but a constant could have easily been included
if we had instead written: X=cbind(1,ewm$ideol,ewm$demstr,ewm$legideol). Similarly,
y=ewm$policyli calls our dependent variable from our data frame. The option W=ewm.W lists
our spatial weights matrix, which we had to define earlier in the file as the matrix ewm.W.
These three options would be enough to run the model, but we also lengthen our MCMC
sample and change our priors. With mcmc we set the length of our sample to 100,000, with
beta.mean and beta.var we set the prior means and variances of our coefficients to reflect
Erikson, Wright and McIver’s (1993) results.

For a fuller illustration of applying this model in practice, see the file ewmProper.R on our
Dataverse page. After applying this structure to all five models in the Statehouse Democracy
system of equations, our findings are presented in Figure A.1. Just as in the main text, the
horizontal axis represents possible coefficient values, and the vertical axis names the input
variable and which of the five dependent variables it affects. Points represent posterior means
of parameters, while line segments represent 90% credible intervals. Black dashed lines with
circle points represent independent errors, red solid lines with triangle points represent a
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standard CAR model, and blue dotted lines with cross points represent the proper CAR
model.

Figure A.1 shows that the means of most (but not all) coefficients tend to be closer to
zero for the proper CAR model, and the credible intervals tend to be narrower. Outside of
the figure, the variance of the clustered error terms is also squeezed downward by the proper
CAR model, which likely is a culprit for why the proper CAR model’s results behave as
they do. So the implication of this figure is that the full model in OpenBUGS is best, but
the proper CAR specification is an available option for those studying a linear model in a
cross-sectional setting.

2 Estimation Approaches

The main text explains that, by using a Gibbs sampler, the full conditionals of a CAR are
sufficient to estimate the Bayesian model. In fact, a Gibbs sampler is our usual approach
because a CAR model is parameterized by defining the full conditionals. Therefore, our
model is already structured for estimation by Gibbs sampling with no further analytical work.
However, that is not our only option: If we apply Brook’s Lemma (1964), we can obtain the
joint likelihood of all observations, and hence the joint posterior of all observations. With a
joint posterior we can estimate the model using a Metropolis-Hastings algorithm. While we
use the Gibbs sampler for the real data examples, for the Monte Carlo experiments we use
Metropolis-Hastings on the joint posterior for programming simplicity in replicate simulated
samples.

For a linear model including both heterogeneous and CAR-structured random effects,
Sun, Tsutakawa and Speckman (1999) define the joint posterior density. We can obtain the
same estimates by sampling from the logarithm of the joint posterior density instead, which
is:

−N
2

ln(σ2
h)−

Q

2
ln(σ2

c )−
(y −Xβ − φ)′(y −Xβ − φ)

2σ2
h

− (1)

φ′Bφ

2σ2
c

+ ln{G−1(σ2
h, 1, 1)}+ ln{G−1(σ2

c , 1, 1)}

Here, N is the number of observations, Q is the number of CAR random effects (equal to N in
a cross-sectional model), σ2

h is the variance of the heterogenous error term, σ2
c is the variance

of the clustering error term, y is the vector of observed values of the dependent variable, X
is a matrix of predictors for all observations, β is the vector of regression coefficients, φ is a
vector of spatial random effects for all observations, and G−1 represents an inverse gamma
distribution. We generally use an inverse gamma prior on each of the variance terms, setting
both the shape and scale parameters to 1 (though other distributions could apply). In this
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Figure A.1: Posterior means and 90% credible intervals of coefficients for the policy liberalism
model using results from linear models, results from a CAR structure, and results from a
proper CAR model.

9



model, we have assumed a flat prior on the coefficients, though we easily could include any
of a variety of probability distributions for the coefficients as a prior.

As a final term from the log-posterior, B represents the correlation matrix among the
various random effects, φ. We define B = Dw − ρW, where Dw is a diagonal matrix where
each term on the diagonal is the sum of all weights for an observation, W is the spatial
weight matrix (defined by neighbor contiguity to produce an average of neighbors), and ρ
is a ridge-style penalty that makes B nonsingular and thereby allows us to find B−1. In
principle, setting ρ = 1 would be desirable because it would mean that the theoretical mean
of each φ random effect would be the average of neighbors’ random effects, but this leaves us
with a nonsingular B matrix. In practice for the Monte Carlo experiment, we set ρ = 0.97
as the value closest to 1 that still allows computational matrix inversion in every simulated
sample we try. In general, if we want to sample from this log-posterior density instead of the
full conditionals, we have the option of using a Metropolis-Hastings algorithm as well—as
we do in the Monte Carlo experiment.

3 Details on the Monte Carlo Experiment

In the main text, we report the results of a Monte Carlo experiment in which we contrast
a CAR model with a simple Bayesian linear model when there is spatial correlation in the
errors. When simulating data, we use the following data generating process:

yi = β0 + β1x1i + β2x2i + θi + φi

θi ∼ N (0, σ2
h) (2)

φ ∼ CAR(1/σ2
c )

σ2
c is the variance of the spatial random effects (called φ) and σ2

h is the variance of the
heterogeneous random effects (called θ). As the main text states, the first treatment variable
in the Monte Carlo experiments is to manipulate the relative share of the error variance that
is spatially correlated. The relative share of spatial clustering is:

ψ =
σc

σc + σh
(3)

For a given ψ of interest, we would like σc = ψ√
ψ2+(1−ψ)2

and σh = 1−ψ√
ψ2+(1−ψ)2

. If these

are the standard deviations of the respective disturbance terms, two results hold: (1) By
substituting these values back into Equation 3, it is easily demonstrated that we recover
the original ψ itself meaning that these standard deviations do result in the proper share
of clustered error variance that we seek. (2) With these parameterizations of the standard
deviations, it always holds that σ2

c + σ2
h = 1 regardless of the value of ψ. The advantage

10



of this feature is that the total level of error variance is the same regardless of the level of
spatial clustering. To do otherwise would vary the error variance while also varying the level
of spatial clustering, violating the logic of an experiment.

With this in mind as our goal, simulating the heterogeneous error term is simple. We draw

100 simulated values from θ
i.i.d.∼ N (0, (1−ψ)2

ψ2+(1−ψ)2
). Simulating the clustered error term (φ)

involves two steps. First, we simulate an independent error term ε
i.i.d.∼ N (0, 0.49m̄ψ2

ψ2+(1−ψ)2
). Here,

0.49m̄ is based on a constant that Bernardinelli, Clayton and Montomoli (1995) observed
is necessary to equalize variances whenever disturbances are conditionally related through a
neighbor matrix. m̄ is the average number of neighbors that an observation has, and 0.49
is an approximate constant that also needs to be included.1 The remainder of the variance
term ( ψ2

ψ2+(1−ψ)2
) is our target variance for φ, the clustered variance term. Intuitively, this

term has to be weighted upward by 0.49m̄ in order to compensate for the induced error
correlation process, which results in lowering the overall variance of the term.

To that end, the second step in simulating our clustered error term is to create the
following matrix: Σφ = (DW − ρW)−1. This is the variance-covariance matrix of our φ
terms assuming our spatial neighbor structure. We create it by specifying that W is the
neighbor weight matrix, DW is a diagonal matrix in which each element is the sum of the
elements on the corresponding row of W, and ρ is a ridge penalty that allows us to invert this
difference.2 We then conduct Cholesky decomposition to determine Σφ = LL′. This allows
us to impose a correlation structure consistent with spatial clustering by defining φ = Lε.
The resulting φ has the desired spatial correlation structure, and an approximate variance of

ψ2

ψ2+(1−ψ)2
. Hence, we are able to manipulate the error structure across treatments as desired.

For our second experimental treatment variable, we also induce correlation in one of
the predictor variables. For various levels of population ψ in the errors, we compare the
treatments with a correlated and an uncorrelated predictor. Specifically, in Equation 2 we
induce correlation in x2. We did this using the same kind of Cholesky decomposition that
was used to create a correlated φ term.

For each treatment, we created 150 random samples and estimated the model on each
sample. We estimated each of the two models (Bayesian standard linear and Bayesian
CAR) using the Metropolis-Hastings algorithm with a burn-in of 10,000 iterations and a
post burn-in sample of 100,000. We computed the posterior median from each sample as our
point estimate of the parameter, computed the absolute difference between the median and
the true parameter, and we average the absolute differences to get the mean absolute error

1In our example simulation, we use a map of 100 counties in North Carolina to project our data. There
are 492 neighbor connections, so each county has 4.92 connections on average. For the interested reader,
Bernardinelli, Clayton and Montomoli (1995) parameterize this weight in terms of standard deviation so
their weighting constant is 0.7. Our parameterization is in terms of variance, so it is 0.72 = 0.49.

2We set ρ = 0.97. Absent a ridge penalty DW − ρW is singular so an inverse does not exist.
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in each treatment. The results are reported in the main text.

4 Monte Carlo Experiment for a Dichotomous Out-

come

In addition to the Monte Carlo analysis reported in the main article of how CAR models
fared to standard regression with a linear functional form, we also conducted a Monte Carlo
analysis for a binary outcome variable. In this experiment, we varied the level of spatial
correlation in the latent utility. Then, with the simulated data we estimated both a standard
Bayesian logistic regression and then a logistic regression in which the error was divided into a
CAR-based spatial component and a heterogeneous component. When simulating the latent
utility, we followed the exact process described in Appendix Section 3, and then created the
dichotomous variable based on whether the utility was greater than zero. We still varied the
true ψ from 0.1 to 0.9 in increments of 0.1. Again, for each treatment we create 150 random
samples. Each model still had a burn-in of 10,000 iterations and post burn-in sample of
100,000. For this model, data were simulated in R, but then the models were estimated
using OpenBUGS through R’s R2OpenBUGS package.

When estimating the model, we constrained the model so that the clustered stan-
dard deviation would be σc = π√

3

ψ√
ψ2+(1−ψ)2

while the heterogeneous standard deviation is

σh = π√
3

1−ψ√
ψ2+(1−ψ)2

. This guarantees that the standard deviations will satisfy Equation 3’s

specification of how the variance is distributed between the two parts, while also guarantee-
ing that the total variance fits our assumed total logistic variance of σ2

c +σ2
h = π2

3
. A logistic

distribution’s standard deviation can be manipulated to the specified values by treating the
second ratio in each term as a scale parameter.

Figure A.2 presents our findings from this experiment. There were two predictors in the
simulated model, called x1 and x2. Panel (a) shows the mean absolute error for the coefficient
on x1 and panel (b) shows this quantity for the coefficient on x2. For each subfigure, the
horizontal axis represents the true population share of unexplained variance in the utility
that is attributable to spatial dependence, and the vertical axis represents the mean absolute
error. The blue dashed spikes show the mean absolute error for a simple logistic regression,
and the red solid spikes show the mean absolute error for a logistic regression with a CAR
error structure.

The substantive results of Figure A.2 for logistic regression models resemble those of our
linear model Monte Carlo experiment. At low levels of spatial variance (such as ψ = 1), the
mean absolute error is quite similar for a traditional logistic regression and for a CAR logit
model for both coefficients. Since there is the more complex parameterization with the CAR
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Figure A.2: Mean absolute error of the coefficients of two predictors in a logistic regression
model, contingent on the share of error variance with clustering.

model, it makes sense that there would be minimal pickup with spatial correlation is not
much of a problem. However, as the share of the random utility that is spatially dependent
rises, a gap starts to open up between the standard and CAR versions of the logit model,
with CAR showing better values of the mean absolute error. This efficiency gain in the
presence of greater spatial correlation is exactly what we would expect and exactly why the
model is useful.3

5 Duration Data: Adoption of Lotteries

Another variety of data that is common in the study of state politics and policy is duration
data, or the time until a policy is adopted or an action occurs. As a classic example, Berry
and Berry (1990) report a model of the time until a state adopted an education lottery, using
data from 1964 to 1986. As with all duration models there is right-censoring, meaning that
some states never adopted a lottery in the time frame, but may have at a later date. Event

3We also conducted this experiment for a situation in which x2 itself was spatially correlated. In this
treatment, coefficients for x2 showed a slightly wider efficiency gap in favor of the CAR model relative to
the results presented in Figure A.2. The additional pickup was not as great as for the linear model, though.
The Dataverse page contains code to replicate both versions of this experiment.
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history models explicitly address this issue and produce unbiased results despite censoring.

Nevertheless, much more information is available about lottery adoption today. Fig-
ure A.3 shows the cumulative number of states with lotteries by year. To quantify this, by
1986, 27 states had adopted lotteries. A rapid diffusion among the states continued for the
duration of the 1980s, and several more states continued to add programs at a slower rate
over the next twenty years. Updating to 2013, 17 more states have created lotteries, bringing
the total to 44. In other words, 74% of the right-censored observations from the original
model are now observed completely. Therefore, an update of this model is a useful place to
illustrate how to include spatial terms in a duration model.
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Figure A.3: Number of states with lotteries by year, 1963-2013.

Berry and Berry (1990) argue that policy diffusion is possible because voters and legis-
lators in a state that neighbors a lottery state could see revenue flow across the border and
thereby conclude that they needed their own lottery. In fact, Berry and Baybeck (2005)
use the technology of Geographic Information Systems (GIS) to measure state residents’
accessibility to other states’ lotteries. With this information, they show that when a state’s
residents can easily play neighboring states’ lotteries, the state is much more likely to adopt
a lottery of its own to keep the lottery revenue in state. To capture this potential diffusion,
Berry and Berry include the number of neighbors that have adopted lotteries prior to a given

14



year in the structural portion of the model, and they show significant evidence of diffusion.
But does this result stand when we account for potential spatial error correlation?

In three regards these analyses differ from Berry and Berry (1990), although the two
models we compare here are the same on all three counts. First, we update the data by 27
years to run from 1964-2013. Second, we include a quadratic trend over time. In this way, our
analysis more closely resembles the analysis of lotteries by Mooney (2001) and Grossback,
Nicholson-Crotty and Peterson (2004), each of which includes some form of time trend. To
omit a time trend implies that the probability of adopting a lottery does not depend on
how much time has elapsed, but that the baseline hazard of adopting a lottery is always the
same. By including a parametric time trend, the model can allow that a state’s probability of
adopting a lottery may change over time, even if none of the other input variables changes.4

Third, our models include individual frailty terms, meaning that some states may have an
overall unmodeled tendency to adopt a lottery more quickly or more slowly, even holding
the input variables constant. A frailty model includes a random effect for each state that is
constant over time. Failure to account for unobserved heterogeneity in the states can lead
to a higher Type I error rate than is reported (Box-Steffensmeier and Jones 2004; Hougaard
2000; Klein and Moeschberger 2003).

Equation 4 presents the full discrete time hazard model. Yit indicates whether a state
has yet adopted a lottery in a given year, with states dropping-out after adoption:

Yit ∼ Bern(λit)

logit(λit) = x′itβ + φi (4)

βj ∼ N (0, 100)

φi ∼ CAR(3/π2)

xit is the vector of all covariates for an observation including an indicator for gubernatorial
election years, an indicator for non-election or post-election years, lagged real per capita
income, lagged state fiscal health, an indicator for unified party control, the proportion of
a state that is fundamentalist Christian, the number of neighboring states having adopted
a lottery, time, time squared, and a constant. λit is the probability that state i will adopt
a lottery at time t given that it has not adopted a lottery yet, β is a vector of population
parameters, βj (where j = 0, . . . , 9) refers to the individual elements of β, and φi is the
state-level spatial frailty term. Equation 4 also shows that the coefficients have vague normal
priors. The model of Equation 4 follows the recommendation of Darmofal (2009) by forcing
the frailty terms to be geographically correlated with one another by giving them a CAR
prior.5 The CAR prior’s precision is 3/π2, so the variance of the random effects (π2/3) will

4Time is included as an orthogonal quadratic polynomial, using the Cholesky decomposition method
described by Bock (1975).

5In assigning this prior, we match the specification of Berry and Berry (1990) by assuming the fol-
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Figure A.4: Posterior means and 90% credible intervals of coefficients from the duration
model of lottery adoption with independent frailties and with CAR frailties. The models
were fit with a post burn-in MCMC sample of 600,000 in OpenBUGS 3.2.3.

match the assumed individual-level variance of a standard logistic distribution (also π2/3).
The comparison model has frailty terms that are independent of each other.6

Figure A.4 presents a forest plot of the results of the two duration models of time until
lottery adoption. All coefficients plotted above the double bar are drawn on the scale of
the top horizontal axis. Those plotted below the double bar are drawn on the scale of
the bottom axis. Noteworthy right away is that the two election variables, lagged state
income and whether a state was under unified party control, do not display robust effects
in either model, whereas they did in the model reported in Berry and Berry (1990). The
effect of income also drops-out in a non-frailty model with a time trend fit over the original
data, suggesting that modeling the baseline hazard is critical. The other three effects may

lowing pairs of states are neighbors: Arkansas-Kentucky, Illinois-Michigan, New Jersey-Maryland, and
Massachusetts-Maine.

6For the independent frailty term model, the precision of those frailties is 0.6732185. This is done by
scaling 3/π2 with the constant 0.49m̄ where m̄ is the average number of neighbors that a state has. This
ensures that the variance of the frailty terms is approximately equal between the two rival models since
spatial correlation tends to reduce overall variance.

16



have changed due to either the new data or the presence of frailties in general. Meanwhile,
lagged fiscal health continues to have a negative and robust effect, which makes sense given
that adopting a lottery can offer one solution to this problem. Further, states with a large
percentage of fundamentalist Christians in are less likely to adopt a lottery quickly, thus
lasting longer before they finally create a lottery (with three of the six states who still do
not have a lottery scoring high on this variable: Alabama, Mississippi, and Utah).

Most coefficients do not shift much between the two models. However, one primary result
does change: the model contains the temporally lagged number of neighboring states that
have already adopted a lottery. Including the lagged number of neighbors with such a policy
is an unbiased way to incorporate a spatial lag in an event history model (Kreitzer and
Boehmke 2016). When we estimate this model with independent frailties, the coefficient for
the number of neighbors with a lottery remains robustly positive, just as Berry and Berry
(1990) found. Spatially-correlated frailties, alternatively, shift this coefficient’s posterior
distribution such that the effect is no longer robust. This implies that the diffusion process
likely was picking up unmodeled structure in the error terms. In a model in which there is
a horse race between the spatial lag term and our CAR-oriented spatial errors, the errors
seem to win in this case. We should note that Grossback, Nicholson-Crotty and Peterson
(2004) actually show that controlling for the ideological distance between adopter states and
target states also leads the spatial lag’s effect to lose statistical robustness, so a different
result can emerge with an alternative theoretical specification. (We would add that a better
theoretical specification is always the best choice rather than merely cleaning up errors.)
Nevertheless, we still believe there is a worthwhile conclusion here that without accounting
for spatial correlation in the errors, coefficients can be misleading, and a geographically
correlated predictor like a diffusion variable can pick up this variance. Hence, accounting for
this error structure is critical.

While all other coefficients’ posterior means are similar regardless of whether the frailty
terms spatially correlated, the CAR model’s credible intervals tend to be a bit wider than the
intervals with independent frailties (being wider for 6 of 9 coefficients). Hence, in two models
that allow for unobserved heterogeneity, adding geographic information to the structure of
the heterogeneity offers a more conservative estimate of model uncertainty, just as it did in
the cross-sectional Statehouse Democracy model. The CAR model fits better with a DIC of
309 as opposed to a score of 323.2 for the model with independent frailties.

6 Panel Count Data: Clean Air Act Enforcement

To illustrate how to extend the hierarchical CAR methodology to panel data, this study
replicates Monogan’s (2013) analysis of state-level enforcement of the Clean Air Act, which
itself built on Wood’s (1992) study of enforcements from 1977-1985. As these prior studies
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explain, clean air regulation requires activity from several levels of American government.
The United States Environmental Protection Agency (EPA) and environmental agencies
from each of the fifty states all play a regulatory role. This analysis asks how state-level
factors shapes the number of actions states take to enforce clean air policy.

This example is relevant for geospatial data modeling because environmental policy at
the state level has the potential to cluster among neighboring states due to a variety of
unobserved features. For instance, the types of industry found in neighboring states are likely
to be similar, due to similarities in available natural resources and similar labor markets.
Even in a model that attempts to capture this—and the model estimated here does include
manufacturing outputs as a predictor—it is difficult to discern what exact features of industry
will be critical to shaping environmental policy, such as whether certain industries draw more
regulation or whether labor relations call for greater policing. Additionally, on account of
similar histories and views on the role of government (Elazar 1966), neighboring states are
likely to have similar regulatory structures. Finally, it may be that certain regions have a
greater commitment to cooperation on the environment, meaning that states within an area
jointly enforce pollution regulations so that none of them experience excessive environmental
consequences of air pollution. By contrast, in other areas states may be more inclined to
free ride and let their pollution affect other downwind states. Since several of these concepts
are difficult (if not impossible) to measure, the next best option is to account for the spatial
correlation in the error term that these factors are likely to produce.

Figure A.5 plots the dependent variable, the number of enforcement actions taken from
2001-2009 by each of the states. The horizontal axis is the year of activity, and the vertical
axis is the number of acts on a logged scale. Each line represents a state. The states vary
widely in their average levels of enforcement, so we will include random effects by state in this
model. (Whether or not the state random effects are spatially correlated is the comparison
we will make.)

An important feature of these data is that the outcome variable is a count, so we will
assume that the outcome variable has a Poisson distribution. With this alternative distribu-
tion choice, a Generalized Linear Mixed Model (GLMM) is the proper model specification.
Also, Wood (1992) and Monogan (2013) both specified a dynamic functional form wherein
there was temporal spillover in effects from one time period to the next. Our model thereby
will resemble a specification by Brandt and Williams (2001) that allows dynamic effects with
an event count as the dependent variable.

To account for all of these features, Monogan (2013) estimates a state-space model for
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Figure A.5: State-level Clean Air Act enforcement actions by state and year, 2001-2009.
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panel data.7 Equation 5 specifies the model as follows:

yit ∼ P(λit)

λit = ρyi,t−1 + exp{x′itβ + φi}
βj ∼ N (0, 100) (5)

ρ ∼ B(2, 5)

φi ∼ CAR(1/τc)

1/τc ∼ G(.1, .1)

In this equation, yit is the number of enforcement actions taken by state i in year t, λit is
the Poisson parameter, ρ is the first-order time-autoregressive parameter, β is a vector of
population parameters, βj for j = 0, . . . , 8 refers to the individual elements of β, and φi is the
state-level spatial random effect. xit is the vector of all covariates for an observation including
a lag of standardized federal enforcement actions, an indicator for unified Democratic control
of state government, an indicator for unified Republican control of state government, the
unemployment rate, manufacturing outputs, EPA grants, the number of lawsuits related to
clean air originating in a state, and a constant. Equation 5 also shows that the coefficients
have vague normal priors, the autoregressive parameter has a beta prior to constrain it to
the interval ρ ∈ (0, 1), the spatial random effects have a CAR prior, and the hyperprior on
the precision of the random effects has a vague gamma distribution. Overall, this model
assumes a Poisson distribution for the outcome, includes spatial random effects, and allows
for temporal autoregression. Therefore, it should take care of all the issues facing these data:
repeated observations of the same states, dynamic causality, a count process as the outcome
variable, and geographic dependence.

Figure A.6 presents a forest plot of the results from the model in Equation 5 and contrasts
them with the results of a similar model that does not force the random effects to be spatially
clustered. Black circles with dashed lines represent the posterior means and credible intervals
for the model with independent random effects, while red triangles with solid lines represent
the model with CAR-structured random effects.

In Figure A.6, the results in the spatial versus non-spatial specifications of the model differ
very little. The mean coefficients are approximately the same either way. Again, however,
the credible intervals are consistently larger for the model with CAR-distributed random
effects than for the model with independent random effects. As far as statistical inferences
are concerned, placing a CAR prior on the random effects reduces the opportunity to commit
a Type I error in this case as well. This pattern fits with much of what was reported in
the models of the main text. Also, like the other models, the overall fit of the model with

7Additional details about the model are available in Blundell, Griffith and Windmeijer (2002). The
technique is similar to the model Brandt and Williams (2001) use for a single time series.
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Figure A.6: Posterior means and 90% credible intervals of coefficients from the dynamic
model of Clean Air Act enforcement from 2001-2009 with independent random effects and
with CAR random effects. The models were fit with a post burn-in MCMC sample of 600,000
in OpenBUGS 3.2.3.
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CAR-distributed state random effects is improved with a DIC score of 40280, as opposed to
the model with independent random effects which has a DIC of 40350.

7 Statehouse Democracy, Ideological Distance

This paper deals with diffusion and clustering in terms of geographical space, or contiguity.
However, diffusion may occur across non-geographical space as well. Boehmke and Pacheco
(2016) discuss policy diffusion as a function of ideological similarity between states, similiarity
of bureaucratic structure, and other pathways besides contiguity. Nicholson-Crotty and
Carley (2016) find that policy diffusion occurs when policymakers observe successful policies
in states with similar implementation strategies or regulatory environments. Volden (2016)
demonstrates that abandoning policies diffuses across ideologically similar states when that
policy is deemed a failure. Thus, the robust diffusion literature is growing even more as
scholars uncover how policy diffusion occurs over a variety of non-geographic dimensions.

To demonstrate how scholars may examine diffusion or clustering in non-geographic space,
we fit a CAR structure using an ideological distance matrix onto our cross-sectional example
using the Erikson, Wright and McIver (1993) Statehouse Democracy data in section 4 of
this paper. Using each state’s measure of legislative liberalism, we obtain the weight of each
state on another by taking the reciprocal of the absolute difference of the states’ legislative
ideology, or 1

|zi−zj | where z is ideology and the terms i and j refer to distinct states. In

this weights matrix, states whose legislatures are ideologically similar are closer neighbors.
Note that while geographical weights matrices often contain binary values (1 if the states
share a physical border and 0 otherwise), the ideological weights matrix contains continuous
values, with higher values indicating more ideological similarity. (In both cases, we do row-
standardize these weights.) Ideologically similar states could be more likely to have similar
unmeasured traits than ideologically distant states; if they do, then their error terms will
contain ideological autocorrelation. A CAR model can yield efficiency gains if there is strong
ideological clustering.

Equation 6 represents the CAR structural equation model that follows the recursive struc-
ture from the Statehouse Democracy model (Erikson, Wright and McIver 1993: 129), which
we also present in the main article. The Y variables are, respectively, party elite liberalism,
Democratic party identification, Democratic legislative strength, legislative liberalism, and
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policy liberalism. x is public opinion liberalism.

Y1i = β1xi + θ1i + φ1i

Y2i = β2xi + β3y1i + θ2i + φ2i

Y3i = β4xi + β5y1i + β6y2i + θ3i + φ3i

Y4i = β7y1i + β8y3i + θ4i + φ4i

Y5i = β9xi + β10y3i + β11y4i + θ5i + φ5i

βj ∼ N (0, 1000) (6)

θki ∼ N (0, σ2
k)

φki ∼ CAR(1/λk)

1/σ2
k ∼ G(4.56420496, 2.1364)

λk ∼ G(1.0, 1.0)

As Equation 6 shows, vague conjugate priors are assumed for the coefficients (βj). The
θ terms refer to the independent disturbance in each equation, with each equation’s dis-
turbances having a homoscedastic variance. The φ terms refer to the ideological spatial
clustering random effect in each equation, with a CAR prior on each. The variance for each
of the random effects terms is freely estimated, and the hyperpriors for these parameters are
based on the fair prior recommendation of Bernardinelli, Clayton and Montomoli (1995). In
short, the model we estimate now is identical to what is reported in the paper, except for
the spatial weights that structure the CAR errors are now driven by ideology rather than
geography.

Figure A.7 is a forest plot that contrasts the results from the model in Equation 6 to
those from a set of recursive Bayesian linear models. The left margin lists the input variable
and the outcome it influences. (In other words, the top coefficient is the effect of legislative
liberalism on policy.) The horizontal axis presents the values that a coefficient may take. The
point characters are placed to reflect the mean of the posterior distribution of a coefficient.
The line segments are placed to reflect the range of the 90% credible intervals, meaning there
is a 0.9 posterior probability that the coefficient falls within that range. Solid blue lines with
blue triangle characters present the results for a CAR model, while dashed black lines with
circle characters present the results for a standard linear model.

As Figure A.7 shows, the mean coefficient estimates shifted only marginally, but the
credible intervals show fairly large changes. All of the CAR credible intervals are narrower
than the intervals from the model with independent errors, so we get substantial efficiency
gains by accounting for ideological similarity in the error term. In fact, the narrower intervals
yield robustness with respect to the effect of party elite liberalism on democratic legislative
strength, which is now negative and robust while it was not robust in Statehouse Democracy.
Further, the overall model fit is a better with the CAR model—the Deviance Information
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Figure A.7: Posterior means and 90% credible intervals of coefficients for the policy liberalism
model using results from linear models and results from a CAR structure based on ideological
distance. The models were fit with a post burn-in MCMC sample of 600,000 in OpenBUGS
3.2.3.

Criterion (DIC) for the CAR model is 288.3, which is a lower score and therefore a better
penalized fit than the independent-error model’s DIC score of 334.9.

It should be noted that all 5 estimates of ψ̂ are lower than .5, meaning that while we
assumed a priori that the share of variance explained by the heterogeneous and ideologically
clustered error terms would be approximately equal, the estimates produced by the model all
indicated less ideological clustering. The mean ψ̂ values are 0.2619 for party elite liberalism,
0.385 for Democratic party identification, 0.4002 for Democratic legislative strength, 0.2334
for legislative liberalism, and 0.1814 for policy liberalism.

24



8 Appendix: Data and Analysis Notes

The sources of the data used in this article are listed as follows:

Cross-Sectional Data: Statehouse Democracy

• Data from the replication of Erikson, Wright and McIver (1993) are from the authors.

Multilevel Panel Data : Support for Welfare Policies

• Data from the replication of Margalit (2013) are from the author.

Duration Data: Adoption of Lotteries

• Data from 1964-1986 in the duration analysis of lottery adoption are from Berry
& Berry: http://mailer.fsu.edu/∼wberry/garnet-wberry/a.html, accessed 20 February
2010.

• Lagged per capita income (remeasured for all of 1964-2013 for consistency): U.S. De-
partment of Commerce, Bureau of Economic Analysis, http://bea.gov, accessed 7
May 2017. Inflation adjustment multiplier from Robert Sahr at Oregon State Uni-
versity, http://liberalarts.oregonstate.edu/spp/polisci/research/inflation-conversion-
factors-convert-dollars-1774-estimated-2024-dollars-recent-year, accessed 7 May 2017.

• Lagged fiscal health: Statistical Abstract of the United States, 1964-2010. Print and
electronic editions: http://www.census.gov, accessed 8 July 2010. For 2010-2013,
updated with Census state government finances data (https://www.census.gov/govs/
state/), accessed 7 May 2017.

• Partisan control of state government. 1987-2009: Klarner (2003), http://www.
indstate.edu/polisci/klarnerpolitics.htm, accessed 3 March 2012. 2010-2013: http:
//www.ballotpedia.org, accessed 7 May 2017.

• Percent fundamentalist: Defined as the percentage of a state’s population adhering
to a fundamentalist Christian religion, as defined by (Smith 1987: Appendix 2). The
Pearson correlation between this series and Berry & Berry’s measure of religion in 1971
is 0.9998. Values from the 1971 study were used for years 1964-1978, values from the
1980 study were used for the years 1979-1989, values from the 1990 study were used
for the years 1990-1998, values from the 2000 study were used for the years 1999-2009,
and values from the 2010 study were used for the years 2010-2013. The data from
each of the first four studies were highly correlated with each other, with the lowest
correlation being 0.9710 between the 1971 and 2000 data. The data were downloaded
from the Association of Religion Data Archives, TheARDA.com, and were collected
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by the Association of Statisticians of American Religious Bodies and the following
principal investigators:

– Johnson, D.W., P. Picard and Bernard Quinn. 1974. Churches and Church
Membership in the United States. Glenmary Research Center: Washington, DC.

– Quinn, B., Herman Anderson, Martin Bradley, Paul Goetting and Peggy Shriver.
1982. Churches and Church Membership in the United States. Glenmary Research
Center: Washington, DC.

– Bradley, M.B., Norman M. Green, Jr., Dale E. Jones, Mac Lynn and Lou McNeil.
1992. Churches and Church Membership in the United States. Glenmary Research
Center: Washington, DC.

– Jones, Dale E., Sherry Doty, Clifford Grammich, James E. Horsch, Richard
Houseal, Mac Lynn, John P. Marcum, Kenneth M. Sanchagrin and Richard H.
Taylor. 2002. Religious Congregations and Membership in the United States 2000:
An Enumeration by Region, State and County Based on Data Reported for 149
Religious Bodies. Glenmary Research Center: Nashville, TN.

– Clifford Grammich, Kirk Hadaway, Richard Houseal, Dale E. Jones, Alexei
Krindatch, Richie Stanley, and Richard H. Taylor. 2012. 2010 U.S. Religion
Census: Religious Congregations & Membership Study. Association of Statisti-
cians of American Religious Bodies. http://www.rcms2010.org/

Panel Count Data: Clean Air Act Enforcement

• State-level clean air enforcement actions by state and year: U.S. Environmental
Protection Agency, Enforcement & Compliance History Online, http://www.epa-
echo.gov/echo/idea download.html, accessed 16 January 2011.

• Non-construction clean air grant allotments: U.S. Environmental Protection Agency,
Grant Awards Database, http://yosemite.epa.gov/oarm/igms egf.nsf/HomePage?
ReadForm, accessed 12 April 2011.

• Manufacturing outputs by state, in chained 2005 dollars: Bureau of Economic Analysis,
Regional Economic Accounts, http://www.bea.gov/regional/gsp/, accessed 25 May
2011.

• Unemployment by state: Bureau of Labor Statistics, http://data.bls.gov/, accessed 18
July 2010. 2009 data accessed 25 May 2011.

• Partisan control of state government: Klarner (2003), http://www.indstate.edu/
polisci/klarnerpolitics.htm, accessed 3 March 2012.

• Lawsuits under the Clean Air Act: Bureau of National Affairs (2001-2010).
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