Appendix A Proof of Lemma 2

We will make use of certain facts established in (´Esik and Rondogiannis 2014).

Suppose that \(L \) is a basic model. For each \(x \in L \) and \(\alpha < \kappa \), we define \(x|_{\alpha} = \bigcup_{\alpha} \{ x \} \). It was shown in (´Esik and Rondogiannis 2014) that \(x = x|_{\alpha} \) and \(x|_{\alpha} \leq x|_{\beta} \) for all \(\alpha < \beta < \kappa \). Moreover, \(x = \bigvee_{\alpha < \kappa} x|_{\alpha} \). Also, for all \(x, y \in L \) and \(\alpha < \kappa \), it holds \(x = y \) iff \(x|_{\alpha} = y|_{\alpha} \), and \(x \sqsubseteq y \) iff \(x|_{\alpha} \sqsubseteq y|_{\alpha} \). And if \(x \sqsubseteq y \), then \(x|_{\alpha} \leq y|_{\alpha} \).

It is also not difficult to prove that for all \(x \in L \) and \(\alpha, \beta < \kappa \), \(x|_{\alpha} \sqsubseteq x|_{\beta} \). Moreover, whenever \(X \subseteq (z)_{\alpha} \) and \(\beta \leq \alpha < \kappa \), it holds \((\bigcup_{\alpha} X)|_{\beta} = \bigcup_{\beta} X \). And if \(\alpha < \beta \), then \((\bigcup_{\alpha} X)|_{\beta} = \bigcup_{\alpha} X \). Finally, we will make use of the following two results from (´Esik and Rondogiannis 2014):

Proposition 1

Let \(A, B \) be basic models and let \(\alpha < \kappa \). If \(f_{j} : A \rightarrow B \) is an \(\alpha \)-monotonic function for each \(j \in J \), then so is \(f = \bigvee_{j \in J} f_{j} \) defined by \(f(x) = \bigvee_{j \in J} f_{j}(x) \).

Lemma 2

Let \(Z \) be an arbitrary set and \(L \) be a basic model. Then, \(Z \rightarrow L \) is a basic model with the pointwise definition of the order of relations \(\leq \) and \(\sqsubseteq \) for all \(\alpha < \kappa \).

Suppose that \(A, B \) are basic models. By Lemma 2 the set \(A \rightarrow B \) is also a model, where the relations \(\leq \) and \(\sqsubseteq \), \(\alpha < \kappa \), are defined in a pointwise way (see (´Esik and Rondogiannis 2014, Subsection 5.3) for details). It follows that for any set \(F \) of functions \(A \rightarrow B \), \(\bigvee F \) can be computed pointwisely. Also, when \(F \subseteq (f)_{\alpha} \) for some \(f : A \rightarrow B \), \(\bigcup_{\alpha} F \) for \(\alpha < \kappa \) can be computed pointwisely.

We want to show that whenever \(f : A \rightarrow B \), \(\beta < \kappa \) and \(F \subseteq (f)_{\beta} \) is a set of functions such that \(F \subseteq [A \rightarrow B] \), then \(\bigcup_{\beta} F \in [A \rightarrow B] \). We will make use of a lemma.

Lemma 3

Let \(L \) be a basic model. For all \(x, y \in L \) and \(\alpha, \beta < \kappa \) with \(\alpha \neq \beta \), \(x|_{\beta} \sqsubseteq_{\alpha} y|_{\beta} \) iff either \(\beta < \alpha \) and \(x|_{\beta} = y|_{\beta} \) (or equivalently, \(x =_{\beta} y \)), or \(\beta > \alpha \) and \(x|_{\alpha} \sqsubseteq_{\alpha} y|_{\alpha} \).

Proof

Let \(x|_{\beta} \sqsubseteq_{\alpha} y|_{\beta} \). If \(\beta < \alpha \) then \(x|_{\beta} = (x|_{\beta})|_{\beta} = (y|_{\beta})|_{\beta} = y|_{\beta} \). If \(\beta > \alpha \) then \(x|_{\alpha} = (x|_{\beta})|_{\alpha} \sqsubseteq_{\alpha} (y|_{\beta})|_{\alpha} = y|_{\alpha} \).

Suppose now that \(\beta < \alpha \) and \(x|_{\beta} = y|_{\beta} \). Then \((x|_{\beta})|_{\alpha} = x|_{\beta} = y|_{\beta} = (y|_{\beta})|_{\alpha} \) and thus \(x|_{\beta} =_{\alpha} y|_{\beta} \). Finally, let \(\beta > \alpha \) and \(x|_{\alpha} \sqsubseteq_{\alpha} y|_{\alpha} \). Then \((x|_{\beta})|_{\alpha} = x|_{\alpha} \sqsubseteq_{\alpha} y|_{\alpha} = (y|_{\beta})|_{\alpha} \) and thus \(x|_{\beta} \sqsubseteq_{\alpha} y|_{\beta} \).

Remark 1

Under the above assumptions, if \(\beta < \alpha \), then \(x|_{\beta} \sqsubseteq_{\alpha} y|_{\beta} \) iff \(x|_{\beta} =_{\alpha} y|_{\beta} \) iff \(x|_{\beta} = y|_{\beta} \).

Corollary 1

For all \(X, Y \subseteq L \) and \(\alpha \neq \beta \), \(\bigcup_{\beta} X \sqsubseteq_{\alpha} \bigcup_{\beta} Y \) iff \(\beta < \alpha \) and \(\bigcup_{\beta} X = \bigcup_{\beta} Y \), or \(\beta > \alpha \) and \(\bigcup_{\alpha} X \sqsubseteq_{\alpha} \bigcup_{\alpha} Y \).
Let \(\alpha \subseteq \kappa \) be a set of functions in \(A \) and \(\beta < \alpha \) is a set of functions in \(B \). Then \(x = \bigcup_\beta X \) and \(y = \bigcup_\beta Y \). Let \(\beta < \alpha \). Then \(x \subseteq \alpha \) iff \(x = y \). Let \(\beta > \alpha \). Then \(x \subseteq \alpha \) iff \(x|_\alpha \subseteq \alpha \). But \(x|_\alpha = \bigcup_\alpha \{ \bigcup_\beta X \} = \bigcup_\alpha X \) and similarly for \(Y \).

\[\square \]

Lemma 4

Let \(A \) and \(B \) be basic models. Suppose that \(f : A \to B \) and \(F \subseteq (f)_\beta \) (where \(\beta < \kappa \)) is a set of functions in \([A \xrightarrow{m} B]\). Then \(\bigcup_\beta F \) is also \(\alpha \)-monotonic for all \(\alpha < \kappa \).

Proof

Suppose that \(\alpha, \beta < \kappa \) and \(x \subseteq \alpha \) in \(A \). Then \((\bigcup_\beta F)(x) = \bigcup_\beta \{ f(x) : f \in F \} \) and \((\bigcup_\beta F)(y) = \bigcup_\beta \{ f(y) : f \in F \} \). We have that \(f(x) \subseteq \alpha f(y) \) for all \(f \in F \). Thus, if \(\alpha = \beta \), then clearly \(\bigcup_\alpha \{ \bigcup_\beta F \}(x) \subseteq \bigcup_\alpha \{ \bigcup_\beta F \}(y) \).

Suppose that \(\beta < \alpha \). Then \(\bigcup_\beta \{ f(x) : f \in F \} = \bigcup_\beta \{ f(y) : f \in F \} \) since \(f(x) = \beta f(y) \) for all \(f \in F \). Thus, \(\bigcup_\beta F \subseteq \bigcup_\alpha (\bigcup_\beta F)(y) \).

Suppose that \(\beta > \alpha \). Then \(\bigcup_\alpha \{ f(x) : f \in F \} \subseteq \bigcup_\alpha \{ \bigcup_\beta F \}(y) \). We equip \([A \xrightarrow{m} B]\) with the order relations \(\subseteq \) and \(\subseteq_\alpha \) inherited from \(A \to B \). We have the following lemma:

Lemma 5

If \(A \) and \(B \) are basic models, then so is \([A \xrightarrow{m} B]\) with the pointwise definition of the order of relations \(\subseteq \) and \(\subseteq_\alpha \) for all \(\alpha < \kappa \).

Proof

It is proved in (Ésik and Rondogiannis 2014) that the set of functions \(A \to B \) is a basic model with the pointwise definition of the relations \(\subseteq \) and \(\subseteq_\alpha \), so that for all \(f, g : A \to B \) and \(\alpha < \kappa \), \(f \leq g \) iff \(f(x) \leq g(x) \) for all \(x \in A \) and \(f \subseteq_\alpha g \) iff \(f(x) \subseteq_\alpha g(x) \) for all \(x \in A \). It follows that for any \(F \subseteq B^A \) and \(\alpha < \kappa \), \(\bigvee F \) and \(\bigcup_\alpha F \) can also be computed pointwise:

\[
(\bigvee F)(x) = \bigvee \{ f(x) : x \in A \} \quad \text{and} \quad (\bigcup_\alpha F)(x) = \bigcup_\alpha \{ f(x) : f \in F \}.
\]

By Proposition 1 and Lemma 4, for all \(F \subseteq B^A \), if \(F \) is a set of functions \(\alpha \)-monotonic for all \(\alpha \), then \(\bigvee F \) and \(\bigcup_\alpha F \) are also \(\alpha \)-monotonic for all \(\alpha \). Since the relations \(\subseteq \) and \(\subseteq_\alpha \), \(\alpha < \kappa \) on \([A \xrightarrow{m} B]\) are the restrictions of the corresponding relations on \(B^A \), in view of Proposition 1 and Lemma 4, \([A \xrightarrow{m} B]\) also satisfies the axioms in Definition 1, so that \([A \xrightarrow{m} B]\) is a basic model.

The following lemma is shown in (Ésik and Rondogiannis 2014, Subsection 5.2) and will be used in the proof of the basis case of the next lemma:

Lemma 6

\((V, \leq)\) is a complete lattice and a basic model.

Lemma 2

Let \(D \) be a nonempty set and \(\pi \) be a predicate type. Then, \((\lbrack \pi \rbrack_D, \leq_\pi)\) is a complete lattice and a basic model.
Proof
Let π be a predicate type. We prove that $[\pi]_D$ is a basic model by induction on the structure of π. When $\pi = \alpha$, $[\pi]_D = V$, a basic model. Suppose that π is of the sort $\iota \to \pi'$. Then $[\pi_1]_D = D \to [\pi']_D$, which is a basic model, since $[\pi']_D$ is a model by the induction hypothesis. Finally, let π be of the sort $\pi_1 \to \pi_2$. By the induction hypothesis, $[\pi_1]_D$ is a model for $i = 1, 2$. Thus, by Lemma 5, $[\pi]_D = [[\pi_1]_D \xrightarrow{m} [\pi_2]_D]$ is also a basic model.

Remark 2
Let C denote the category of all basic models and α-monotonic functions. The above results show that C is cartesian closed, since for all basic models A, B, the evaluation function $\text{eval} : (A \times B) \times A \to B$ is α-monotonic (in both arguments) for all $\alpha < \kappa$.

Indeed, suppose that $f, g \in [A \xrightarrow{m} B]$ and $x, y \in A$ with $f \sqsubseteq_\alpha g$ and $x \sqsubseteq_\alpha y$. Then $\text{eval}(f, x) = f(x) \sqsubseteq_\alpha g(x) = \text{eval}(g, x)$ by the pointwise definition of $f \sqsubseteq_\alpha g$. Also, $\text{eval}(f, x) = f(x) \sqsubseteq_\alpha f(y) = \text{eval}(f, y)$ since f is α-monotonic.

Since C is cartesian closed, for all $f \in [B \times A \xrightarrow{m} C]$ there is a unique $\Lambda f \in [B \xrightarrow{m} [A \xrightarrow{m} C]]$ in with $f(y, x) = \text{eval}(\Lambda f(y), x)$ for all $x \in A$ and $y \in B$.

Appendix B Proofs of Lemmas 3, 4 and 5

Lemma 3
Let $E : \rho$ be an expression and let D be a nonempty set. Moreover, let s be a state over D and let I be an interpretation over D. Then, $[E]_s(I) \in \rho_D$.

Proof
If $\rho = \iota$ then the claim is clear. Let E be of a predicate type π. We prove simultaneously the following auxiliary statement. Let $\alpha < \kappa$, $\forall : \pi$, $x, y \in [\pi']_D$. If $x \sqsubseteq_\alpha y$ then $[E]_{s[\forall/x]}(I) \sqsubseteq_\alpha [E]_{s[\forall/y]}(I)$. The proof is by structural induction on E. We will cover only the nontrivial cases.

Case ($E_1 E_2$): The main statement follows directly by the induction hypothesis of E_1 and E_2. There are two cases. Suppose that $E_1 : \pi_1 \to \pi$ and $E_2 : \pi_1$. Then $[E_1]_s(I) \in [\pi_1 \to \pi]_D = [[\pi_1]_D \xrightarrow{m} [\pi]_D]$ and $[E_2]_s(I) \in [\pi_1]_D$ by the induction hypothesis. Thus, $[E_1]_s(I) (\{E_2\}_s(I)) \in [\pi]_D$. Suppose now that $E_1 : \iota \to \pi$ and $E_2 : \iota$. Then $[E_1]_s(I) \in [\iota \to \pi]_D = D \to [\pi]_D$ by the induction hypothesis and $[E_2]_s(I) \in [I]_D = D$. It follows again that $[E_1]_s(I) (\{E_2\}_s(I)) \in [\pi]_D$.

Auxiliary statement: Let $x, y \in [\pi']_D$ and assume $x \sqsubseteq_\alpha y$. We have by definition $\{E_1 E_2\}_{s[\forall/x]}(I) = [E_1]_{s[\forall/x]}(I) (\{E_2\}_{s[\forall/y]}(I))$, and similarly for $\{E_1 E_2\}_{s[\forall/y]}(I)$. We have $E_1 : \pi_1 \to \pi$ and $E_2 : \pi_1$ or $E_1 : \iota \to \pi$ and $E_2 : \iota$. In the first case, by induction hypothesis $[E_1]_{s[\forall/x]}(I) \in [\pi_1 \to \pi]_D$, and thus is α-monotonic. Also, $[E_1]_{s[\forall/x]}(I) \sqsubseteq_\alpha [E_1]_{s[\forall/y]}(I)$ and $[E_2]_{s[\forall/x]}(I) \sqsubseteq_\alpha [E_2]_{s[\forall/y]}(I)$ by the induction hypothesis. It follows that $[E_1]_{s[\forall/x]}(I) (\{E_2\}_{s[\forall/y]}(I)) \sqsubseteq_\alpha [E_1]_{s[\forall/x]}(I) (\{E_2\}_{s[\forall/y]}(I)) \sqsubseteq_\alpha [E_1]_{s[\forall/x]}(I) (\{E_2\}_{s[\forall/y]}(I))$.

The second case is similar. We have $[E_1]_{s[\forall/x]}(I) \sqsubseteq_\alpha [E_1]_{s[\forall/y]}(I)$ by the induction hypothesis, moreover, $[E_2]_{s[\forall/x]}(I) = [E_2]_{s[\forall/y]}(I)$. Therefore, $[E_1]_{s[\forall/x]}(I) (\{E_2\}_{s[\forall/x]}(I)) \sqsubseteq_\alpha [E_1]_{s[\forall/x]}(I) (\{E_2\}_{s[\forall/y]}(I))$.

Case \((\lambda V. E)\): Assume \(V : \rho_1\) and \(E : \pi_2\). We will show that \([\lambda V. E]_s(I) \subseteq [\rho_1 \rightarrow \pi_2]_D\). If \(\rho_1 = \iota\) then the result follows easily from the induction hypothesis of the first statement. Assume \(\rho_1 = \pi_1\). We show that \([\lambda V. E]_s(I) \subseteq [\pi_1 \rightarrow \pi_2]_D\), that is, \(\lambda_d.[E]_s[V/d](I)\) is \(\alpha\)-monotonic for all \(\alpha < \kappa\). That follows directly by the induction hypothesis of the auxiliary statement.

Auxiliary statement: It suffices to show that \([((\lambda V. E)]_s[V/x]\{1\}(I) \subseteq [\lambda V. E)]_s[V/x](I)\) and equivalently for every \(d\), \([E]_s[V/x][U/d](I) \subseteq [E]_s[V/x][U/d](I)\) which follows from induction hypothesis.

\[\square\]

Lemma 4
Let \(P\) be a program. Then, \(I_P\) is a complete lattice and a basic model.

Proof
From Lemma 2 we have that for all predicate types \(\pi\), \([\pi]_{U_P}\) is a complete lattice and a basic model. It follows, by Lemma 2, that for all predicate types \(\pi\), \(P_\pi \rightarrow [\pi]_{U_P}\) is also a complete lattice and a model, where \(P_\pi\) is the set of predicate constants of type \(\pi\). Then, \(I_P\) is \(\prod \pi P_\pi \rightarrow [\pi]_{U_P}\) which is also a basic model (proved in (Ésik and Rondogiannis 2014)).

\[\square\]

Lemma 5 (\(\alpha\)-Monotonicity of Semantics)
Let \(P\) be a program and let \(E : \pi\) be an expression. Let \(I, J\) be Herbrand interpretations and \(s\) be a Herbrand state of \(P\). For all \(\alpha < \kappa\), if \(I \subseteq_\alpha J\) then \([E]_s(I) \subseteq_\alpha [E]_s(J)\).

Proof
The proof is by structural induction on \(E\).

Induction Base: The cases \(V, false, true\) are straightforward since their meanings do not depend on \(I\). Let \(I \subseteq_\alpha J\). If \(E\) is a predicate constant \(p\) then we have \(I(p) \subseteq_\alpha J(p)\).

Induction Step: Assume that the statement holds for expressions \(E_1\) and \(E_2\) and let \(I \subseteq_\alpha J\).

Case \((E_1 E_2)\): It holds \([[E_1 E_2]]_s(I) = [E_1]_s(I)[[E_2]]_s(I)\). By induction hypothesis we have \([E_1]_s(I) \subseteq_\alpha [E_1]_s(J)\) and therefore \([E_1]_s(I)[[E_2]]_s(I) \subseteq_\alpha [E_1]_s(J)[[E_2]]_s(I)\). We perform a case analysis on the type of \(E_2\). If \(E_2\) is of type \(\iota\) and since \(I, J\) are Herbrand interpretations, it is clear that \([E_2]_s(I) = [E_2]_s(J)\) and therefore \([E_1]_s(I)[[E_2]]_s(I) \subseteq_\alpha [E_1]_s(I)[[E_2]]_s(I)\). By definition of application we get \([[E_1 E_2]]_s(I) \subseteq_\alpha [[E_1 E_2]]_s(J)\).

Case \((\lambda V. E_1)\): It holds by definition that \([((\lambda V. E_1)]_s(I) = \lambda_d.[E_1]_s[V/d](I)\). It suffices to show that \(\lambda_d.[E_1]_s[V/d](I) \subseteq_\alpha \lambda_d.[E_1]_s[V/d](J)\) and equivalently that for every \(d\), \([E_1]_s[V/d](I) \subseteq_\alpha [E_1]_s[V/d](J)\) which holds by induction hypothesis.

Case \((E_1 \lor \pi E_2)\): It holds \([[E_1 \lor \pi E_2]]_s(s) = \lor([[E_1]_s(I), [E_2]_s(I)]\). It suffices to show that \(\lor([[E_1]_s(I), [E_2]_s(I)] \subseteq_\alpha \lor([[E_1]_s(J), [E_2]_s(J)])\) which holds by induction hypothesis.

Case \((E_1 \land \pi E_2)\): It holds \([[E_1 \land \pi E_2]]_s(I) = \land([[E_1]_s(I), [E_2]_s(I)]\). Let \(\pi = \rho_1 \rightarrow \cdots \rightarrow \rho_n\).
Let $\rho_n \to \alpha$, it suffices to show for all $d_i \in [\rho_n]_{\mathcal{U}}$, $\bigwedge\{[E_1]_s(I) \cdot d_1 \cdots d_n, [E_2]_s(I) \cdot d_1 \cdots d_n\} \subseteq \alpha \bigwedge\{[E_1]_s(J) \cdot d_1 \cdots d_n, [E_2]_s(J) \cdot d_1 \cdots d_n\}$. We define $x_i = [E_1]_s(I) \cdot d_1 \cdots d_n$ and $y_i = [E_1]_s(J) \cdot d_1 \cdots d_n$ for $i \in \{1, 2\}$. We perform a case analysis on $\nu = \bigwedge\{x_1, x_2\}$. If $\nu < F_\alpha$ or $\nu > T_\alpha$ then $\bigwedge\{x_1, x_2\} = \bigwedge\{y_1, y_2\}$ and $\bigwedge\{x_1, x_2\} \subseteq \bigwedge\{y_1, y_2\}$. If $\nu = F_\alpha$ then $F_\alpha \leq \bigwedge\{y_1, y_2\} \leq T_\alpha$ and therefore $\bigwedge\{x_1, x_2\} \subseteq \bigwedge\{y_1, y_2\}$. If $\nu = T_\alpha$ then $\bigwedge\{y_1, y_2\} = T_\alpha$ and thus $\bigwedge\{x_1, x_2\} \subseteq \bigwedge\{y_1, y_2\}$. If $F_\alpha < \nu < T_\alpha$ then $F_\alpha < \bigwedge\{y_1, y_2\} \leq T_\alpha$ and therefore $\bigwedge\{x_1, x_2\} \subseteq \bigwedge\{y_1, y_2\}$.

Case ($\sim E_1$): Assume $\text{order}([E_1]_s(I)) = \alpha$. Then, by induction hypothesis $[E_1]_s(I) \subseteq \alpha\bigwedge\{E_1\}_{s}(J)$ and thus $\text{order}([E_1]_s(J)) \geq \alpha$. It follows that $\text{order}([E_1]_s(I)) > \alpha$ and $\text{order}([E_1]_s(J)) > \alpha$ and therefore $\text{order}([E_1]_s(I)) \subseteq \alpha\bigwedge\{E_1\}_{s}(J)$.

Case ($\exists V.E_1$): Assume V is of type ρ. It holds $\bigwedge\{E_1\}_{s}(I) = \bigwedge\{E_1\}_{s}(V/d\hat{d}(J))$. It suffices to show $\bigwedge\{E_1\}_{s}(V/d\hat{d}(I)) \subseteq \bigwedge\{E_1\}_{s}(V/d\hat{d}(J))$ which holds by induction hypothesis and Axiom 4.

Appendix C Proof of Theorem 2

We start by providing some necessary background material from (Ésik and Rondogiannis 2014) on how the \bigcap operation on a set of interpretations is actually defined.

Let $x \in V$. For every $X \subseteq (x)_\alpha$ we define $\bigcap_\alpha X$ as follows: if $X = \emptyset$ then $\bigcap_\alpha X = T_\alpha$, otherwise

$$\bigcap_\alpha X = \begin{cases} \bigwedge X & \text{order}(\bigwedge X) \leq \alpha \\ T_{\alpha + 1} & \text{otherwise} \end{cases}$$

Let P be a program, $I \in \mathcal{I}_P$ be a Herbrand interpretation of P and $X \subseteq (I)_\alpha$. For all predicate constants p in P of type $\rho_1 \to \cdots \to \rho_n \to \alpha$ and $d_i \in [\rho_n]_{\mathcal{U}}$ and for all $i = \{1, \ldots, n\}$, it holds $\bigcap_\alpha X = (\bigcap_\alpha X)(p) \cdot d_1 \cdots d_n = \bigcap_\alpha \{I(p) \cdot d_1 \cdots d_n : I \in X\}$.

Let X be a nonempty set of Herbrand interpretations. By Lemma 4 we have that \mathcal{I}_P is a complete lattice with respect to \subseteq and a basic model. Moreover, by Lemma 1 it follows that \mathcal{I}_P is also a complete lattice with respect to \subseteq. Thus, there exist the least upper bound and greatest lower bound of X for both \subseteq and \subseteq. We denote the greatest lower bound of X as $\bigwedge X$ and $\bigcap X$ with respect to relations \subseteq and \subseteq respectively. Then, $\bigcap X$ can be constructed in an symmetric way to the least upper bound construction described in (Ésik and Rondogiannis 2014). More specifically, for each ordinal $\alpha < \kappa$ we define the sets $X_\alpha, Y_\alpha \subseteq X$ and $x_\alpha \in \mathcal{I}_P$, which are then used in order to obtain $\bigcap X$.

Let $Y_0 = X$ and $x_0 = \bigcap_\alpha Y_0$. For every α, with $0 < \alpha < \kappa$ we define $X_\alpha = \{x \in X : \forall \beta \leq \alpha x = x_\alpha \}$, $Y_\alpha = \bigcap_\beta < \alpha X_\beta$; moreover, $x_\alpha = \bigcap_\alpha Y_\alpha$ if Y_α is nonempty and otherwise.

Finally, we define $x_\alpha = \bigwedge_\beta < \alpha x_\beta$. In analogy to the proof of (Ésik and Rondogiannis 2014) for the least upper bound it can be shown that $x_\alpha = \bigwedge X$ with respect to the relation \subseteq. Moreover, it is easy to prove that by construction it holds $x_\alpha = x_\alpha x_\beta$ and $x_\beta \geq x_\alpha$ for all $\beta < \alpha$.

Lemma 7

Let P be a program, $\alpha < \kappa$ and M_α be a Herbrand model of P. Let $M \subseteq (M_\alpha)_\alpha$ be a nonempty set of Herbrand models of P. Then, $\bigcap_\alpha M$ is also a Herbrand model of P.

Proof
Assume $\prod_\alpha M$ is not a model. Then, there exists a clause $p \leftarrow E$ in P and $d_i \in [p_i]_D$ such that $[E](\prod_\alpha M) d_1 \cdots d_n > (\prod_\alpha M)(p) d_1 \cdots d_n$. Since for every $N \in M$ we have $\prod_\alpha M \subseteq_\alpha N$, using Lemma 5 we conclude $[E](\prod_\alpha M) \subseteq_\alpha [E](N)$. Let $x = \prod_\alpha \{N(p) d_1 \cdots d_n : N \in M\}$.

If order $x = \alpha$ then $x = \bigwedge \{N(p) d_1 \cdots d_n : N \in M\}$. If $x = T_\alpha$ then for all $N \in M$ we have $N(p) d_1 \cdots d_n = T_\alpha$. Moreover, $[E](\prod_\alpha M) d_1 \cdots d_n > T_\alpha$ and by α-monotonicity we have $[E](N) d_1 \cdots d_n > T_\alpha$ for all $N \in M$. Then, $N(p) d_1 \cdots d_n < [E](N) d_1 \cdots d_n$ and therefore N is not a model (contradiction). If $x = F_\alpha$ then there exists $N \in M$ such that $N(p) d_1 \cdots d_n = F_\alpha$ and since N is a model we have $[E](N) d_1 \cdots d_n \leq F_\alpha$. But then, it follows $[E](\prod_\alpha M) d_1 \cdots d_n \leq F_\alpha$ and $[E](\prod_\alpha M) d_1 \cdots d_n < x$ (contradiction).

If order $x < \alpha$ then $x = M_\alpha(p) d_1 \cdots d_n$. If $x = T_\beta$ then $[E](\prod_\alpha M) d_1 \cdots d_n > T_\beta$ and $[E](M_\alpha) d_1 \cdots d_n > T_\beta$. Then, we have $M_\alpha(p) d_1 \cdots d_n \not< [E](M_\alpha)$ and thus M_α is not a model of P (contradiction). If $x = F_\beta$ then $[E](M_\alpha) d_1 \cdots d_n \leq F_\beta$ and by α-monotonicity $[E](\prod_\alpha M) d_1 \cdots d_n \leq F_\beta$. Therefore, $[E](\prod_\alpha M) d_1 \cdots d_n < x$ (contradiction).

If order $x > \alpha$ then $x = T_{\alpha+1}$ and there exists model $N \in M$ such that $N(p) d_1 \cdots d_n < T_\alpha$. Moreover, we have $[E](\prod_\alpha M) d_1 \cdots d_n \geq T_\alpha$ and by α-monotonicity we conclude $[E](N) d_1 \cdots d_n \geq T_\alpha$. But then, $[E](N) d_1 \cdots d_n > N(p) d_1 \cdots d_n$ and therefore N is not a model of P (contradiction).

In the following, we will make use of the following lemma that has been shown in (Ésik and Rondogiannis 2014, Lemma 3.18):

Lemma 8
If $\alpha \leq \kappa$ is an ordinal and $(x_\beta)_{\beta < \alpha}$ is a sequence of elements of L such that $x_\beta =_\beta x_\gamma$ and $x_\beta \leq x_\gamma$ ($x_\beta \geq x_\gamma$) whenever $\beta < \gamma < \alpha$, and if $x = \bigvee_{\beta \leq \alpha} x_\beta$ ($x = \bigwedge_{\beta \leq \alpha} x_\beta$), then $x_\beta =_\beta x$ holds for all $\beta < \alpha$.

Lemma 9
Let $(M_\alpha)_{\alpha < \kappa}$ be a sequence of Herbrand models of P such that $M_\alpha =_\alpha M_\beta$ and $M_\beta \leq M_\alpha$ for all $\alpha < \beta < \kappa$. Then, $\bigwedge_{\alpha < \kappa} M_\alpha$ is also a Herbrand model of P.

Proof
Let $M_\infty = \bigwedge_{\alpha < \kappa} M_\alpha$ and assume M_∞ is not a model of P. Then, there is a clause $p \leftarrow E$ and $d_i \in [p_i]_D$ such that $[E](M_\infty) d_1 \cdots d_n > M_\infty(p) d_1 \cdots d_n$. We define $x_\alpha = M_\alpha(p) d_1 \cdots d_n$, $x_\infty = M_\infty(p) d_1 \cdots d_n$, $y_\alpha = [E](M_\alpha) d_1 \cdots d_n$ and $y_\infty = [E](M_\infty) d_1 \cdots d_n$ for all $\alpha < \kappa$. It follows from Lemma 8 that $M_\infty =_\alpha M_\alpha$ and thus $x_\infty =_\alpha x_\alpha$ for all $\alpha < \kappa$. Moreover, using α-monotonicity we also have $[E](M_\infty) =_\alpha [E](M_\alpha)$ and thus $y_\infty =_\alpha y_\alpha$ for all $\alpha < \kappa$. We distinguish cases based on the value of x_∞.

Assume $x_\infty = T_\delta$ for some $\delta < \kappa$. It follows by assumption that $y_\infty > T_\delta$. Then, since $x_\infty =_\delta x_\delta$ it follows $x_\delta = T_\delta$. Moreover, since $y_\infty =_\delta y_\delta$ and order(y_δ) < δ it follows $y_\delta = y_\infty > T_\delta$. But then, $y_\delta > x_\delta$ (contradiction since M_δ is a model by assumption).

Assume $x_\infty = F_\delta$ for some $\delta < \kappa$. Then, since $x_\infty =_\delta x_\delta$ it follows $x_\delta = F_\delta$. Then, since M_δ is a model it follows $y_\delta \leq x_\delta$ and thus $y_\delta \leq F_\delta$. But then, since $y_\infty =_\delta y_\delta$ it follows $y_\delta = y_\infty \leq F_\delta$. Therefore, $y_\infty \leq x_\infty$ that is a contradiction to our assumption that $y_\infty > x_\infty$.

Assume $x_\infty = 0$. Then, $y_\infty > x_\infty = 0$. Let $y_\infty = T_\beta$ for some $\beta < \kappa$. Then, since
Let \(P \) be a program and \(M \) be a nonempty set of Herbrand models of \(P \). Then, \(\bigcap M \) is also a Herbrand model of \(P \).

Proof

We use the construction for \(\bigcap M \) described in the beginning of this appendix. More specifically, we define sets \(M_\alpha, Y_\alpha \subseteq M \) and \(M_\alpha \in T_P \). Let \(Y_0 = M \) and \(M_0 = \bigcap_0 M_0 \).

For every \(\alpha > 0 \), let \(M_\alpha = \{ M \in M : \forall \beta \leq \alpha \ M =_\alpha M_\beta \} \) and \(Y_\alpha = \bigcap_{\beta < \alpha} M_\beta \); moreover, \(M_\alpha = \bigcap_\alpha Y_\alpha \) if \(Y_\alpha \) is nonempty and \(M_\alpha = \bigwedge_{\beta < \alpha} M_\beta \) if \(Y_\alpha \) is empty. Then, \(\bigcap M = \bigwedge_{\alpha < \kappa} M_\alpha \). It is easy to see that \(M_\alpha =_\alpha M_\alpha \) and \(M_\beta \supseteq M_\alpha \) for all \(\beta < \alpha \).

We distinguish two cases. First, consider the case when \(Y_\alpha \) is nonempty for all \(\alpha < \kappa \).

Then, \(M_\alpha = \bigcap Y_\alpha \) and by Lemma 7 it follows that \(M_\alpha \) is a model of \(P \). Moreover, by Lemma 9 we get that \(M_\infty = \bigwedge_{\alpha < \kappa} M_\alpha \) is also a model of \(P \).

Consider now the case that there exists a least ordinal \(\delta < \kappa \) such that \(Y_\delta \) is empty. It holds (see (Esik and Rondogiannis 2014)) that \(\bigcap M = \bigwedge_{\alpha < \delta} M_\delta \). Suppose \(\bigcap M \) is not a model of \(P \). Then, there is a clause \(\rho \in E \), a Herbrand state \(s \) and \(d_i \in [\rho]_D \) such that \(\langle E \rangle(M_\infty) d_1 \cdots d_n > \bigcap M(p) d_1 \cdots d_n \). We define \(x_\infty = M_\alpha(p) d_1 \cdots d_n, x_\infty = \bigcap M(p) d_1 \cdots d_n, y_\infty = \langle E \rangle(M_\infty) d_1 \cdots d_n \) for all \(\beta \leq \alpha \) and \(\delta < \kappa \).

We distinguish cases based on the value of \(x_\infty \).

Assume \(x_\infty = T_\infty \). It follows by assumption that \(y_\infty > x_\infty = T_\infty \).

Then, by Lemma 8 it holds that \(M_\infty =_\beta M_\beta \) and we get \(x_\infty =_\beta x_\infty \) and therefore \(x_\infty = T_\infty \). Moreover, by \(\alpha \)-monotonicity we get \(\langle E \rangle(M_\infty) d_1 \cdots d_n =_\beta \langle E \rangle(M_\beta) d_1 \cdots d_n \) and it follows that \(y_\infty =_\beta y_\infty \). Moreover, since \(y_\infty > T_\infty \) it follows \(y_\infty =_\beta y_\infty \) and \(y_\infty >_\beta y_\infty \). Since \(Y_\beta \) is not empty by assumption we have that \(M_\beta = \bigcap_\beta Y_\beta \) and by Lemma 7 we get that \(M_\beta \) is a model of \(P \) (contradiction since \(y_\infty > x_\infty \)).

Assume \(x_\infty = F_\infty \) for some \(\beta < \delta \). Then, by Lemma 8 it holds \(M_\infty =_\beta M_\beta \) and therefore \(x_\infty =_\beta x_\infty \). It follows \(x_\infty = F_\beta \). Moreover, since \(Y_\beta \) is nonempty by assumption and by Lemma 7 it follows that \(M_\beta = \bigcap_\beta Y_\beta \) is a model of \(P \) and thus \(y_\beta \leq x_\beta = F_\beta \). By \(\alpha \)-monotonicity we get \(\langle E \rangle(M_\infty) =_\beta \langle E \rangle(M_\beta) \) and therefore \(y_\infty =_\beta y_\infty \). It follows \(y_\infty \leq F_\beta = x_\infty \) (contradiction to the initial assumption \(y_\infty > x_\infty \)).

Assume \(x_\infty = T_\infty \). By assumption we have \(y_\infty > x_\infty = T_\infty \). Then, let \(y_\infty = T_\infty \) for some \(\gamma < \delta \). By Lemma 8 it holds \(M_\infty =_\gamma M_\gamma \) and by \(\alpha \)-monotonicity it follows \(\langle E \rangle(M_\infty) =_\gamma \langle E \rangle(M_\gamma) \) and thus \(y_\infty =_\gamma y_\gamma \). It follows that \(y_\gamma = T_\gamma \). Moreover, since \(\gamma < \delta \) we know by assumption that \(Y_\gamma \) is nonempty and therefore \(M_\gamma = \bigcap Y_\gamma \). By Lemma 7 \(M_\gamma \) is a model of \(P \). It follows \(T_\gamma = y_\gamma \leq x_\gamma \), that is, \(x_\gamma = T_\infty \) for some \(\beta \leq \gamma < \delta \). Moreover, since \(x_\infty =_\gamma x_\gamma \) it follows \(x_\infty = T_\infty \) that is a contradiction (since by assumption \(x_\infty = T_\infty \)).

Assume \(x_\infty = F_\infty \). This case is not possible. Recall that \(Y_\alpha \) is not empty for all \(\alpha < \delta \) and thus \(M_\alpha = \bigcap Y_\alpha \). By the definition of \(\bigcap \) we observe that either \(\bigcap_\alpha Y_\alpha \leq F_\alpha \) or \(\bigcap_\alpha Y_\alpha \geq T_\alpha + 1 \). Then, since \(M_\infty = \bigwedge_{\alpha < \delta} M_\alpha \) it is not possible to have \(x_\infty = F_\infty \).

Assume \(x_\infty = 0 \). This case does not arise. Again, \(Y_\alpha \) is not empty for all \(\alpha < \delta \) and
thus $M_\alpha = \bigcap_\alpha Y_\alpha$. Moreover, by definition of \bigcap_α, $x_\alpha \neq 0$ for all $\alpha < \delta$. Moreover, since $M_\infty = \bigwedge_{\alpha < \delta} M_\alpha$ and since $\delta < \kappa$ it follows that the limit can be at most T_δ.

Appendix D Proofs of Lemmas 6, 7 and Theorem 3

Lemma 6
Let P be a program. For every predicate constant $p : \pi \in P$ and $I \in \mathcal{I}_P$, $T_P(I)(p) \in \llbracket \pi \rrbracket_{U_P}$.

Proof
It follows from the fact that $\llbracket \pi \rrbracket_{U_P}$ is a complete lattice (Lemma 2).

Lemma 7
Let P be a program. Then, T_P is α-monotonic for all $\alpha < \kappa$.

Proof
Follows directly from Lemma 5 and Proposition 1.

Lemma 10
Let P be a program. Then, $M \in \mathcal{I}_P$ is a model of P if and only if $T_P(M) \leq \mathcal{I}_P M$.

Proof
An interpretation $I \in \mathcal{I}_P$ is a model of P iff $\llbracket E \rrbracket(I) \leq \pi I(p)$ for all clauses $p \leftarrow \pi E$ in P iff $\bigvee_{(p \leftarrow \pi E) \in P} \llbracket E \rrbracket(I) \leq \mathcal{I}_P I(p)$ iff $T_P(I) \leq \mathcal{I}_P I$.

Proposition 11
Let D be a nonempty set, π be a predicate type and $x, y \in \llbracket \pi \rrbracket_D$. If $x \leq_\pi y$ and $x =_\beta y$ for all $\beta < \alpha$ then $x \sqsubseteq_\alpha y$.

Proof
The proof is by structural induction on π.

Induction Basis: If $x =_\beta y$ for all $\beta < \alpha$ then either $x = y$ or $\text{order}(x), \text{order}(y) \geq \alpha$. If $x = y$ then $x \sqsubseteq_\alpha y$. Suppose $x \neq y$. If $\text{order}(x), \text{order}(y) > \alpha$ then $x =_\alpha y$. If $x = F_\alpha$ then clearly $x \sqsubseteq_\alpha y$. If $x = T_\alpha$ then $T_\alpha \leq y$ and therefore $y = T_\alpha$. The case analysis for y is similar.

Induction Step: Assume that the statement holds for π. Let $f, g \in \llbracket \rho \rightarrow \pi \rrbracket_D$ and $\alpha < \kappa$. For all $x \in \llbracket \rho \rrbracket_D$ and $\beta < \alpha$, $f(x) \leq g(x)$ and $f(x) =_\beta g(x)$. It follows that $f(x) \sqsubseteq_\alpha g(x)$. Therefore, $f \sqsubseteq_\alpha g$.

Proposition 12
Let P be a program and I, J be Herbrand interpretations of P. If $I \leq \mathcal{I}_P J$ and $I =_\beta J$ for all $\beta < \alpha$ then $I \sqsubseteq_\alpha J$.

Proof
Let $I, J \in \mathcal{I}_P$ and $\alpha < \kappa$. For all predicate constants p and $\beta < \alpha$, $I(p) \leq J(p)$ and $I(p) =_\beta J(p)$. It follows by Proposition 11 that $I(p) \sqsubseteq_\alpha J(p)$ and therefore, $I \sqsubseteq_\alpha J$.

Lemma 13
Let P be a program. If M is a model of P then $T_P(M) \subseteq M$.

Proof
It follows from Lemma 10 that if M is a Herbrand model of P then $T_P(M) \leq_{I_P} M$. If $T_P(M) = M$ then the statement is immediate. Suppose $T_P(M) <_{I_P} M$ and let α denote the least ordinal such that $T_P(M) =_{\alpha} M$ does not hold. Then, $T_P(M) =_{\beta} M$ for all $\beta < \alpha$. Since $T_P(M) <_{I_P} M$, by Proposition 12 it follows that $T_P(M) \sqsubseteq_{\alpha} M$. Since $T_P(M) =_{\alpha} M$ does not hold, it follows that $T_P(M) \sqsubseteq \alpha M$. Therefore $T_P(M) \sqsubseteq M$.

Theorem 3 (Least Fixed Point Theorem)
Let P be a program and let \mathcal{M} be the set of all its Herbrand models. Then, T_P has a least fixed point M_P. Moreover, $M_P = \bigcap \mathcal{M}$.

Proof
It follows from Lemma 7 and Theorem 1 that T_P has a least pre-fixed point with respect to \sqsubseteq that is also a least fixed point. Let M_P be that least fixed point of T_P, i.e., $T_P(M_P) = M_P$. It is clear from Lemma 10 that M_P is a model of P, i.e., $M_P \in \mathcal{M}$. Then, it follows $\bigcap \mathcal{M} \subseteq M_P$. Moreover, from Theorem 2 it is implied that $\bigcap \mathcal{M}$ is a model and thus from Lemma 13, $\bigcap \mathcal{M}$ is a pre-fixed point of T_P with respect to \subseteq. Since M_P is the least pre-fixed point of P, $M_P \subseteq \bigcap \mathcal{M}$ and thus $M_P = \bigcap \mathcal{M}$.