COFINITENESS OF LOCAL COHOMOLOGY MODULES FOR PRINCIPAL IDEALS

KEN-ICHIROH KAWASAKI

Abstract

In this note we show that if an ideal I of a noetherian ring is principal, up to radical, then the local cohomology modules with support in $V(I)$ are I-cofinite.

1. Introduction

Throughout this note, we assume that all rings are commutative and noetherian with identity.

Definition 1. Let R be a ring, I an ideal of R, and N an R-module. We say that N is I-cofinite if the support of N is contained in $V(I)$ and $\text{Ext}^i_R(R/I, N)$ is finitely generated for all $i \geq 0$ (compare [5, §2]).

There are many questions about local cohomology modules (compare [7]). In particular, Grothendieck (compare [4, Exposé XIII, 1.1]) proposed the following conjecture.

Conjecture 1. Let M be a module of finite type over a ring R, and let I be an ideal of R. Then the module $\text{Hom}_R(R/I, H^j_I(M))$ is of finite type for all $j \geq 0$.

Hartshorne later refined this conjecture (compare [5, §2]), and proposed the following.

Conjecture 2. Let M be an R-module of finite type, and let I be an ideal of R. Then $\text{Ext}_R^i(R/I, H^j_I(M))$ is of finite type for all $i \geq 0$ and $j \geq 0$.

Using the derived category, Hartshorne showed that if M is a finitely generated R-module, where R is a complete regular local ring, then $H^j_I(M)$ is I-cofinite in two cases:

(i) I is a non-zero principal ideal [5, Corollary 6.3];
(ii) I is a prime ideal with dimension 1 [5, Corollary 7.7].

Huneke, Koh, Delfino and Yoshida refined result (ii) to more general situations (compare [8, Theorem 4.1], [2, Theorem 3] and [14, Theorem (1.1)]).

Concerning result (i), Yassemi recently proved that the local cohomology module $H^j_I(M)$ is I-cofinite for a principal ideal I, by using generalized section functors if M has finite projective dimension or R is Gorenstein [13, Corollary 4.10].

Received 1 February 1997; revised 18 September 1997.

1991 Mathematics Subject Classification 14B15, 13D03, 18G15.

proved this independently for the local case [14, Proposition (4.1)]. We shall give a simple proof of this result without any restriction.

Hartshorne’s counterexample [5, §3] says that the above conjectures are not true for an ideal generated by 2 elements even if the ring \(R \) is regular.

2. The main theorem

In what follows, \(R \) is a ring, \(M \) is a finitely generated \(R \)-module, \(I \) is a proper ideal of \(R \), and \(X \) is the affine scheme \(\text{Spec} \, R \). We use \(D_I(-) \) to denote the functor \(\lim \to \text{Hom}_R(I^n, -) \). We note the Deligne formula:

\[
D_I(M) \simeq \Gamma(U, \mathcal{F}),
\]

where \(\mathcal{F} = M^\sim \) is the associated coherent \(\mathcal{O}_X \)-module of \(M \), and \(U = X \setminus V(I) \).

Lemma 1. Let \(p \) be a non-negative integer, and let \(N \) be an \(R \)-module. Then \(\text{Ext}^p_R(N, H^j_I(M)) \) is a finitely generated \(R \)-module if and only if \(\text{Ext}^p_R(N, DI(M)) \) is a finitely generated \(R \)-module.

Proof. By the standard exact sequence of [5, Proposition 2.2]

\[
0 \longrightarrow \Gamma_I(M) \longrightarrow M \longrightarrow \Gamma(U, M^\sim) \longrightarrow H^1_I(M) \longrightarrow 0,
\]

and the above formula, we have the short exact sequence

\[
0 \longrightarrow L \longrightarrow D_I(M) \longrightarrow H^1_I(M) \longrightarrow 0,
\]

where \(L \simeq M/\Gamma_I(M) \). Since \(L \) is finitely generated, the assertion follows from the long exact sequence obtained by application of \(\text{Ext}^i(N, -) \) to this sequence.

Lemma 2. Assume that \(H^j_I(M) = 0 \) for all \(j \neq 0, 1 \). Then \(\text{Ext}^i_R(N, H^j_I(M)) \) is finitely generated for each finitely generated \(R \)-module \(N \) with \(\text{Supp}(N) \subseteq V(I) \) and all \(i, j \geq 0 \). In particular, \(H^j_I(M) \) is \(I \)-cofinite for all \(j \geq 0 \).

Proof. We have only to prove the lemma for \(N = R/I \), by [8, Lemma 4.2]. Observe that, for an injective \(R \)-module \(E \), the standard exact sequence

\[
0 \longrightarrow H^0_I(E) \longrightarrow E \longrightarrow D_I(E) \longrightarrow H^1_I(E) \longrightarrow 0
\]

reduces to a split exact sequence

\[
0 \longrightarrow H^0_I(E) \longrightarrow E \longrightarrow D_I(E) \longrightarrow 0,
\]

so that \(D_I(E) \simeq E/H^0_I(E) \) is injective and \(I \)-torsion-free. In particular,

\[
\text{Hom}_R(R/I, D_I(E)) = 0.
\]

Now let \(E^* \) be an injective resolution of \(M \). Since the functor \(D_I \) is left exact, and \(\mathcal{R}/D_I(M) \simeq H^{j+1}_I(M) = 0 \) for all \(j > 0 \), it follows that \(D_I(E^*) \) is an injective resolution of \(D_I(M) \). Since \(\text{Hom}_R(R/I, D_I(E^*)) \) is a zero complex, it follows that \(\text{Ext}^i_R(R/I, D_I(M)) = 0 \) for all \(i \geq 0 \). The proof is completed by Lemma 1.
Theorem 1. Let \(f \) be an element of \(R \), and let \(I \) be an ideal generated by \(f \) up to radical. Then \(\text{Ext}^q_R(N,H^j_I(M)) \) is finitely generated for each finitely generated \(R \)-module \(N \) with support in \(V(I) \) and for all \(i,j \geq 0 \); that is, \(H^j_I(M) \) is \(1 \)-cofinite for all \(j \geq 0 \).

Proof. Since \(\sqrt{I} \) and \(H^j_I(M) \) are equal to \(\sqrt{(Rf)} \) and \(H^j_{\sqrt{I}}(M) \), respectively, we have only to prove the theorem in the case \(I = Rf \) and \(N = R/I \). Then \(H^j_I(M) = 0 \) for all \(j > 1 \), by the Arithmetic Rank Vanishing Theorem, and so it is enough to show that \(\text{Ext}^q_R(N,D_i(M)) \) is finitely generated for all \(i \geq 0 \), by Lemma 1. However, since \(I = Rf \), we have \(D_i(M) \simeq M_f \). There exists \(t > 0 \) such that \(f^tN = 0 \). Therefore, since multiplication by \(f^t \) on \(\text{Ext}^q_R(N,M_f) \) is both zero and an automorphism, the latter module must be zero.

Corollary 1. If the dimension of \(M \) is no more than one, then \(\text{Ext}^q_R(N,H^j_I(M)) \) is finitely generated for each finitely generated \(R \)-module \(N \) with support in \(V(I) \) and for all \(i,j \geq 0 \). In particular, \(H^j_I(M) \) is \(1 \)-cofinite for all \(j \geq 0 \).

Proof. We may assume \(N = R/I \). Since \(\dim M \leq 1 \), \(H^j_I(M) \) vanishes for \(q \neq 0,1 \), by [12, 6.1 Theorem]. The corollary follows from Lemma 2.

Corollary 2. Let \(Y \) be a closed subscheme of \(X \), defined by an ideal \(I \) of \(R \). If \(X \setminus Y \) is affine, then \(\text{Ext}^q_R(N,H^j_I(M)) \) is finitely generated for each finitely generated \(R \)-module \(N \) with support in \(Y \) and for all \(i,j \geq 0 \). In particular, \(H^j_I(M) \) is \(1 \)-cofinite for all \(j \geq 0 \).

Proof. We may assume \(N = R/I \). Let \(\mathcal{F} = M^\sim \) be the associated coherent \(\mathcal{O}_X \)-module. We note that there is an isomorphism \(H^{q+1}_Y(\mathcal{F}) \simeq H^q(X \setminus Y,\mathcal{F}) \) for all \(q \geq 1 \), by [3, Proposition 2.2]. Since \(X \setminus Y \) is affine, we have \(H^q_Y(\mathcal{F}) = 0 \) for \(q \neq 0,1 \). The assertion follows from Lemma 2.

Definition 2. Let \(L \) be an \(R \)-module and \(J \) an ideal of \(R \). We say that \(L \) is \(weakly \) \(J \)-cofinite if \(\text{Ext}^q_R(R/J,L) \) is finitely generated for all \(i \geq 0 \).

Proposition 1. Let \(I \subset J \) be ideals of a ring \(R \). If \(J \) is an ideal generated by an element \(f \) up to radical, then \(\text{Ext}^q_R(N,H^j_I(M)) \) is finitely generated for all finitely generated \(R \)-modules \(N \) with support in \(V(J) \) and for all \(i,j \geq 0 \).

Proof. We may assume that \(J \) and \(N \) are equal to \(Rf \) and \(R/J \), respectively, by [8, Lemma 4.2].

In this case, the standard long exact sequence

\[
\begin{array}{cccccc}
0 & \longrightarrow & H^{j+1}_I(Rf) & \longrightarrow & H^j_I(R) & \longrightarrow & H^j_I(Rf) \\
& & \longrightarrow & H^j_I(R) & \longrightarrow & H^j_I(M_f) \\
& & \longrightarrow & \cdots \\
& & \longrightarrow & H^j_I(R) & \longrightarrow & H^j_I(M_f) \\
& & \longrightarrow & \cdots \\
& & \longrightarrow & H^j_I(R) & \longrightarrow & H^j_I(Rf) \\
& & \longrightarrow & \cdots \\
\end{array}
\]

simplifies considerably, because \(I + Rf = Rf \) is principal, so that \(H^j_{Rf}(M_f) = 0 \) for all \(j > 1 \), by the Arithmetic Rank Vanishing Theorem.
Now, for all \(j \geq 0 \), the module \(H_j^1(M_1) \) is weakly \(Rf \)-cofinite, since for all \(i \geq 0 \), multiplication by \(f \) on \(\text{Ext}_R^i(R/Rf, H_j^1(M_1)) \) is both zero and an automorphism. Therefore, for \(j \geq 2 \), we have \(H_j^1(M) \cong H_j^1(M_1) \) is weakly \(Rf \)-cofinite. Also, \(H_j^0(M_1), H_j^1(M_1) \) and \(H_j^{p-Rf}(M) \) (which is zero), and the finitely generated \(R \)-modules \(H_j^0(M) \) and \(H_j^{p-Rf}(M) \), are weakly \(Rf \)-cofinite; furthermore, \(H_j^{p-Rf}(M) \cong H_j^2(M) \) is \(Rf \)-cofinite, by Theorem 1. It is therefore easy to split the first two (and a bit) rows of the above long exact sequence into short exact sequences to deduce that \(H_j^1(M) \) is weakly \(Rf \)-cofinite.

3. An example

Let \(R \) be a ring, \(M \) a finitely generated \(R \)-module, and \(X \) the affine scheme \(\text{Spec} \ R \).

Lemma 3. Let \(Y_1 \) and \(Y_2 \) be closed subschemes of \(X \) with defining ideals \(I_1 \) and \(I_2 \), respectively, and set \(I = I_1 + I_2 \). If \(X \setminus Y_i \) is affine for \(i = 1, 2 \), then \(\text{Hom}_R(R/I, H_j^1(M)) \) and \(\text{Ext}_R^i(R/I, H_j^1(M)) \) are finitely generated. Further, for an integer \(p \geq 0 \), \(\text{Ext}_R^{p+j}(R/I, H_j^1(M)) \) is finitely generated if and only if \(\text{Ext}_R^p(R/I, H_j^2(M)) \) is finitely generated.

Proof. First we note that Lemma 1 is the same as the following, by the Deligne formula: for an integer \(p \geq 0 \), a proper ideal \(J \) of \(R \) and an \(R \)-module \(N \), \(\text{Ext}_R^p(N, H_j^1(M)) \) is finitely generated if and only if \(\text{Ext}_R^p(N, I(U, M^-)) \) is finitely generated, where \(U = X \setminus \text{V}(J) \).

Put \(U_i = X \setminus Y_i \) for \(i = 1, 2 \), and consider the Mayer–Vietoris exact sequence

\[
0 \longrightarrow \Gamma(U_1 \cup U_2, M^-) \longrightarrow \Gamma(U_1, M^-) \oplus \Gamma(U_2, M^-) \longrightarrow \Gamma(U_1 \cap U_2, M^-) \longrightarrow H^1(U_1 \cup U_2, M^-) \longrightarrow H^1(U_1, M^-) \oplus H^1(U_2, M^-) \longrightarrow \cdots.
\]

We then have an exact sequence

\[
0 \longrightarrow \Gamma(U_1 \cup U_2, M^-) \longrightarrow \Gamma(U_1, M^-) \oplus \Gamma(U_2, M^-) \\
\longrightarrow \Gamma(U_1 \cap U_2, M^-) \longrightarrow H^1(U_1 \cup U_2, M^-) \longrightarrow 0,
\]

since \(U_1 \) and \(U_2 \) are affine. By this sequence, we have two short exact sequences

\[
0 \longrightarrow \Gamma(U_1 \cup U_2, M^-) \longrightarrow \Gamma(U_1, M^-) \oplus \Gamma(U_2, M^-) \longrightarrow C \longrightarrow 0, \quad (x)
\]

\[
0 \longrightarrow C \longrightarrow \Gamma(U_1 \cap U_2, M^-) \longrightarrow H_j^2(M) \longrightarrow 0, \quad (\beta)
\]

where \(C \) is the image of \(\Gamma(U_1, M^-) \oplus \Gamma(U_2, M^-) \to \Gamma(U_1 \cap U_2, M^-) \). Since an affine scheme is separated, \(U_1 \cap U_2 \) is again affine. Then \(\text{Ext}_R^i(R/I, \Gamma(U_1 \cap U_2, M^-)) \) is finitely generated for all \(q \geq 0 \), by Corollary 2 and Lemma 1, since \(\text{Supp}(R/I) \subseteq V(I_1I_2) \).

For an integer \(p \geq 0 \), it follows from (\(\beta \)) that \(\text{Hom}_R(R/I, C) \) is finitely generated, and \(\text{Ext}_R^{p+1}(R/I, C) \) is finitely generated if and only if \(\text{Ext}_R^p(R/I, H_j^2(M)) \) is finitely generated. Since \(U_j \) is affine, \(H_j^2(M) \) is \(I_j \)-cofinite for \(i = 1, 2 \), by Corollary 2 again.

Hence \(\text{Ext}_R^p(R/I, \Gamma(U_1, M^-)) \) is finitely generated, by Lemma 1, for \(i = 1, 2 \) and all \(q \geq 0 \). It follows that \(\text{Ext}_R^p(R/I, \Gamma(U_i, M^-)) \) is finitely generated for \(i = 1, 2 \) and all \(q \geq 0 \), since \(I \) contains \(I_j \) [8, Lemma 4.2]. For an integer \(p \geq 0 \), we have that \(\text{Hom}_R(R/I, \Gamma(U_1 \cup U_2, M^-)) \) is finitely generated, and \(\text{Ext}_R^{p+1}(R/I, \Gamma(U_1 \cup U_2, M^-)) \) is finitely generated if and only if \(\text{Ext}_R^p(R/I, C) \) is finitely generated, by (\(x \)). Therefore \(\text{Hom}_R(R/I, \Gamma(U_1 \cup U_2, M^-)) \) and \(\text{Ext}_R^p(R/I, \Gamma(U_1 \cup U_2, M^-)) \) are finitely generated,
Theorem 1. Hence the Bass numbers of Ext₁κ numbers of following.

Example. Let A be a regular ring k[x,y][[u,v]] over a field k which is complete with the J = (u,v)-adic topology. Let M be A/(xu + yv). Hartshorne shows that

\[\text{Hom}_A(A/J, H^2_1(M)) \]

is not finitely generated as A-module [5, Example 1]. That is, the second local cohomology module is not J-cofinite in the sense of Grothendieck (compare [4, Exposé XIII, 1.1]), even if the base ring is regular. One can see that the first local cohomology module \(H^1_1(M) \) is J-cofinite in the sense of Grothendieck, by Lemma 1 together with the fact that \(\text{Hom}_R(R/J, D_1(M)) = 0 \). Unfortunately, this is not J-cofinite in the sense of Hartshorne, as in Definition 1. Indeed, since the standard open subsets \(D(u) \) and \(D(v) \) of SpecA are affine, \(\text{Hom}_A(A/J, H^1_1(M)) \) and \(\text{Ext}^1_A(A/J, H^1_1(M)) \) are finitely generated, and \(\text{Ext}^2_A(A/J, H^1_1(M)) \) is finitely generated if and only if \(\text{Ext}^2_A(A/J, H^2_1(M)) \) is finitely generated by Lemma 3. It follows from (γ) that \(\text{Ext}^2_A(A/J, H^2_1(M)) \) is not finitely generated.

4. Bass numbers

There are some results on the finiteness of the Bass numbers of local cohomology modules (compare [9], [10] and [11]). Let \(R \) be a ring. For a prime ideal \(P \) of \(R \) and an \(R \)-module \(T \), the \(i \)-th Bass number \(\mu_i(P, T) \) is defined to be \(\dim_{R/P} \text{Ext}^i_{R/P}(\kappa(P), T_P) \), where \(\kappa(P) = R_P/P \cdot R_P \) (compare [1, 2.7 Lemma]). If \(T \) is \(I \)-cofinite, then the Bass numbers of \(T \) are finite [10, Remark 2]. The results in Sections 2 and 3 yield the following.

Corollary 3. Let \(M \) be a finitely generated \(R \)-module, and let \(I \) be an ideal of \(R \). Suppose that \(I \) is a principal ideal of \(R \), or a subideal of a principal ideal generated by a non-unit element \(f \) of \(R \). If the prime ideal \(P \) contains \(f \), then the Bass numbers \(\mu_i(P, H^1_1(M)) \) of the local cohomology module \(H^1_1(M) \) are finite for all \(i, j \geq 0 \).

Proof. If \(I \) is a principal ideal, then \(H^1_1(M) \) is \(I \)-cofinite for all \(j \geq 0 \), by Theorem 1. Hence the Bass numbers of \(H^1_1(M) \) are finite for all \(j \geq 0 \).

Let \(f \) be an element of \(R \) such that the ideal \(Rf \) contains \(I \). In this case, \(\text{Ext}^i_A(R/Rf, H^1_1(M)) \) is finitely generated for all \(i, j \geq 0 \), by Proposition 1. Let \(P \) be a prime ideal of \(R \) which contains \(f \). Then \(\text{Ext}^i_A(R/P, H^1_1(M)) \) is finitely generated for all \(i, j \geq 0 \). So its localization \(\text{Ext}^i_A(R/P, H^1_1(M))_P \) is a finitely generated \(R_P \)-module for all \(i, j \geq 0 \). Therefore \(\mu_i(P, H^1_1(M)) \) is finite for all \(i, j \geq 0 \).

Remark. If \(P \) does not contain \(f \), then the Bass numbers \(\mu_i(P, H^1_1(M)) \) are not necessarily finite. Let \(J \) be an ideal, and consider the ideal \(I \) of the form \(Rf \cap J \). Since \(P \) does not contain \(f \), it follows from the Mayer–Vietoris exact sequence that \(H^1_1(M)_P \) is isomorphic to \(H^1_1(M)_P \) for all \(j \geq 0 \). Then \(\mu_i(P, H^1_1(M)) \) is finite if and only if \(\mu_i(P, H^1_1(M)) \) is finite for each \(i, j \geq 0 \). This implies that there is an example in which \(\mu_i(P, H^1_1(M)) \) is not finite for some \(i, j \geq 0 \). Indeed, Hartshorne shows that \(\mu^0(P, H^2_1(M)) \) is not finite [5, §3].
Corollary 4. Let \((R, \mathfrak{m})\) be local, and let \(M\) and \(I\) be as above. Then the socle \(\text{Soc}(H^j_I(M))\) is a finitely generated \(R\)-module for all \(j \geq 0\). Further, if the local cohomology module \(H^j_I(M)\) has support only at \(\mathfrak{m}\) for some \(j\), then it is Artinian.

Acknowledgements. The author would like to express his hearty thanks to the referee. The statements and proofs of Theorem 1, Lemma 2 and Proposition 1 are due to the referee, who refined the author’s spectral sequence proofs to the elegant shorter proofs. Definition 2 is also due to the referee. Also, the referee pointed out the lack of a condition in the earlier version of Corollary 3. Further, the author is grateful to Professors Y. Hinohara, S. Tachibana, T. Kanzo and K. Eto for their advice and support during work on this note.

References