Copyright © 2001 Society for Psychophysiological Research

Psychophysiological characteristics of narcissism during active and passive coping

ROBERT M. KELSEY, a SIDNEY R. ORNDUFF, b CHRISTINA M. McCANN, c AND SARAH REIFF d

a Department of Pediatrics, University of Tennessee College of Medicine, Memphis, USA
b Department of Psychology, University of Wyoming, Laramie, WY, USA
c Department of Pediatrics, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
d Department of Medicine, University of Massachusetts Medical Center, Worcester, MA, USA

Abstract
This study provides the first psychophysiological analysis of narcissism by measuring autonomic responses during active and passive anticipatory coping in 40 undergraduate men who scored high or low on the Narcissistic Personality Inventory (NPI). Compared to the low NPI group, the high NPI group showed greater pre-ejection period (PEP) shortening, cardiac deceleration, and skin conductance response (SCR) habituation during anticipation of an aversive stimulus (p < .02). As expected, SCR and PEP reactivity were greater during active than passive coping. In the case of PEP, this effect emerged only in the low NPI group; the high NPI group showed the greatest PEP reactivity during the first task, regardless of coping demands. These data support hypothesized relationships among narcissism, psychopathy, and psychological predictors of cardiovascular disease, and suggest that a psychobiological dimension may underlie important features of narcissism.

Descriptors: Narcissism, Skin conductance response, Cardiovascular reactivity, Psychopathy, Personality, Impedance cardiography

Despite 100 years of theoretical and clinical work on narcissism (see Akhtar & Thomson, 1982), most of the quantitative empirical work on this personality construct has been conducted within the past 20 years. This empirical work stems primarily from two developments: (a) the inclusion of narcissistic personality disorder in recent editions of the Diagnostic and Statistical Manual of Mental Disorders (DSM-III, DSM-IV; American Psychiatric Association [APA], 1980, 1994) and (b) the development of psychometrically sound instruments for assessing narcissism in normal and clinical populations (Emmons, 1987; Raskin & Terry, 1988). Most of the empirical work on narcissism has involved validation of these instruments by correlating them with various self-report measures or behavioral ratings (Emmons, 1987; Raskin & Terry, 1988; Rhodewalt & Morf, 1995). However, some experimental studies of narcissism have emerged recently (e.g., Bushman & Baumeister, 1998; Kernis & Sun, 1994; Morf & Rhodewalt, 1993; Rhodewalt & Morf, 1998).

Narcissism has been conceptualized as a cognitive and affective preoccupation with the self (Westen, 1990), characterized by egocentricity, grandiosity, arrogance, envy, a need for admiration, and a lack of empathy (Akhtar & Thomson, 1982; APA, 1994). Narcissists have fragile or unstable self-esteem, a sense of entitlement and unreasonable expectations of special treatment, and an interpersonal style that is exploitative, insensitive, competitive, dominant, and aggressive (APA, 1994; Raskin & Terry, 1988; Rhodewalt, Madrian, & Cheney, 1998). Threats to self-esteem, involving criticism, defeat, or the failure of others to meet narcissistic expectations of entitlement and special treatment, tend to provoke hostility, contempt, shame, and rage (APA, 1994; Bushman & Baumeister, 1998; Kernis & Sun, 1994; Morf & Rhodewalt, 1993; Rhodewalt & Morf, 1998). Indeed, many features of narcissism, such as grandiosity and dominance, seem to serve a defensive function to manage negative affect and maintain self-esteem (Raskin, Novacek, & Hogan, 1991; Raskin & Terry, 1988; Rhodewalt & Morf, 1995).

The most widely used research instrument for assessing narcissism is the Narcissistic Personality Inventory (NPI; Raskin & Terry, 1988). The NPI is a 40-item forced-choice questionnaire based on DSM-III (APA, 1980) criteria for narcissistic personality disorder. The NPI provides a measure of individual differences in narcissism, with extreme elevations reflecting pathological narcissism and less extreme scores reflecting variations in narcissistic personality traits. Thus the NPI is appropriate for use with clinical or nonclinical populations. The NPI has good internal consistency and retest stability, and there is considerable evidence of its construct validity (see Emmons, 1987; Raskin & Hall, 1981; Raskin & Terry, 1988). Scores on the NPI correlate positively with self-report and behavioral measures of egocentricity (Emmons, 1987; Raskin & Terry, 1988), grandiosity (Raskin et al., 1991; Raskin & Novacek, 1991; Rhodewalt & Morf, 1995), hostility and antago-

Portions of this paper were presented at the 1996 meeting of the Society for Psychophysiological Research. We thank Edward S. Katkin for his helpful comments on an earlier draft of this paper.

Address reprint requests to: Robert M. Kelsey, Department of Pediatrics, University of Tennessee at Memphis, 777 Washington Avenue, Suite 215, Memphis, Tennessee 38105, USA. E-mail: rkelsey@utmem.edu
nism (Bradlee & Emmons, 1992; Fukunishi, Hattori, Nakamura, & Nakagawa, 1995; Raskin & Terry, 1988; Raskin et al., 1991; Rhodewalt & Morf, 1995), dominance (Bradlee & Emmons, 1992; Emmons, 1984; Raskin & Terry, 1988; Raskin et al., 1991), aggression (Bushman & Baumeister, 1998; Raskin & Terry, 1988), self-esteem (Emmons, 1984; Kernis & Sun, 1994; Raskin & Terry, 1988; Raskin et al., 1991; Rhodewalt & Morf, 1995, 1998; Rhodewalt et al., 1998), self-esteem instability and affective lability (Emmons, 1987; Rhodewalt et al., 1998), competitiveness, assertiveness, and leadership (Raskin & Terry, 1988), as well as extraversion, exhibitionism, impulsivity, sensation seeking, and impatience (Bradlee & Emmons, 1992; Emmons, 1984; Raskin & Hall, 1981; Raskin & Terry, 1988). Scores on the NPI correlate negatively with empathy (Watson, Grisham, Trotter, & Biderman, 1984) and anxiety (Emmons, 1984; Raskin & Novacek, 1989).

In addition to these correlates, recent studies have linked narcissism to psychopathy (Blackburn & Coid, 1998; Harpur, Hare, & Hakstian, 1989; Zagon & Jackson, 1994) and Type A behavior (Fukunishi et al., 1995, 1996), two areas in which a psychophysiological analysis has been useful and heuristic. Although most experimental research on narcissism has focused on psychosocial concepts such as threats to self-esteem and self-esteem management (e.g., Bushman & Baumeister, 1998; Kernis & Sun, 1994; Morf & Rhodewalt, 1993; Rhodewalt & Morf, 1998), the association of narcissism with psychopathy and Type A behavior raises the possibility that a fundamental psychobiological dimension may be involved (Cloninger, 1987; Fowles, 1994; McMurrin, 1992). Accordingly, a psychophysiological analysis of narcissism may clarify or reveal important attentional, motivational, affective, and self-regulatory processes involved in narcissism, psychopathy, and cardiovascular reactivity and disease.

**Narcissism, Psychopathy, and Psychophysiological Reactivity to Aversive Events**

Kernberg (1989) has suggested that narcissism is the foundation or core of psychopathy and antisocial personality disorder. Indeed, many characteristics of narcissism are features of psychopathy and antisocial personality disorder, including egocentricity, grandiosity, low empathy, low anxiety, a sense of entitlement, interpersonal exploitativeness, dominance and aggression, hostility and antagonism, and impulsivity and sensation seeking (Cleckley, 1976; Harpur et al., 1989; Patrick, 1994; Zagon & Jackson, 1994). Moreover, both self-report and observer ratings indicate that there are significant relationships between narcissism and psychopathy (Blackburn & Coid, 1998; Harpur et al., 1989; Zagon & Jackson, 1994). Thus, well-defined psychophysiological characteristics of psychopathy and antisocial personality disorder, such as diminished skin conductance responding in anticipation of aversive events (Fowles, 1980; Hare, 1978, 1982; Hare & Craigen, 1974; Hare, Frazelle, & Cox, 1978; Lykken, 1995; Ogloff & Wong, 1990; Tharp, Maltzman, Syndulko, & Ziskind, 1980) and diminished skin conductance orienting responses (Hare & Craigen, 1974; Raine & Venables, 1984; Raine, Venables, & Williams, 1995), may also characterize narcissism and indeed stem from a common narcissistic core.

Psychophysiological research has consistently linked psychopathy to diminished electrodermal reactivity in anticipation of punishment or aversive events (Fowles, 1980; Hare, 1978, 1982; Hare & Craigen, 1974; Hare et al., 1978; Ogloff & Wong, 1990; Tharp et al., 1980), regardless of whether those events are unavoidable or avoidable (Hare, 1982; Ogloff & Wong, 1990). The data linking psychopathy to heart rate reactivity are less consistent. Several findings suggest that psychopaths show enhanced heart rate acceleration in anticipation of aversive events (Hare, 1978, 1982; Hare & Craigen, 1974; Hare et al., 1978; Ogloff & Wong, 1990). On the basis of such findings and theoretical concepts of sensory rejection (Lacey, 1967) and active coping (Obrist, 1981), Hare (1978, 1998) has hypothesized that psychopaths may possess a particularly efficient active coping mechanism for reducing the impact of aversive threat. However, a closer examination of these studies suggests a more complicated picture, with nearly as many instances of enhanced heart rate deceleration as acceleration in psychopaths (e.g., Hare, 1982; Ogloff & Wong, 1990), as well as cases in which both cardiac acceleration and deceleration are stronger in psychopaths than in nonpsychopaths (Hare & Craigen, 1974; Hare et al., 1978). Given the moderate magnitude and phasic pattern of heart rate reactivity in these studies, it seems reasonable to suggest as an alternative hypothesis that psychopaths may exhibit enhanced parasympathetic modulatory control or tuning of heart rate, resulting in heightened parasympathetically mediated cardiac acceleration or deceleration depending on the attentional, motor, or coping demands at hand.

Fowles (1980, 1988, 1994) has used Gray’s (1987) motivational theory to develop a theoretical analysis of the electrodermal and heart-rate findings in the psychopathy literature. According to Fowles, variations in heart rate reflect the activity of a behavioral activation system (BAS), an appetitive motivational system that initiates behavior in response to stimuli associated with reward, approach, or active avoidance. These stimuli elicit increases in heart rate, but have little or no impact on electrodermal responding. In contrast, variations in electrodermal responding reflect the activity of a behavioral inhibition system (BIS), an aversive motivational system that inhibits behavior in response to stimuli associated with punishment, nonreward, or passive avoidance. Such aversive stimuli elicit electrodermal responding, but have no consistent effects on heart rate. These two motivational systems presumably interact in a reciprocal, antagonistic manner. Fowles argues that the BIS of psychopaths is deficient, resulting in diminished electrodermal reactivity and a lack of anxiety in anticipation of aversive events, as well as poor inhibition of impulsivity and aggression. In contrast, the BAS of psychopaths is presumably either normal or disinhibited due to the BIS deficiency, resulting in either normal or exaggerated heart-rate reactivity during anticipatory stress.

Although psychopaths are low in anticipatory anxiety, there is some evidence that they may be prone to heightened somatic anxiety (Schalling, 1978), including symptoms of cardiovascular hyperreactivity and an exaggerated fight/flight response to aversive stimuli (Fowles, 1994). Thus, despite diminished sympathetic effects on the electrodermal system, sympathetic adrenomedullary effects on the cardiovascular system may be enhanced in psychopathy. An enhanced fight/flight response might contribute to the characteristic impulsivity and aggression associated with psychopathy (Fowles, 1994), as well as to the link between risk factors for antisocial behavior and those for cardiovascular disease (Pine et al., 1996). A similar combination of deficient behavioral inhibition, normal or disinhibited behavioral activation, and heightened mobilization for fight or flight might characterize narcissism, if it indeed forms the core of psychopathy (Kernberg, 1989).

**Narcissism, Psychological Predictors of Heart Disease, and Cardiovascular Reactivity to Stress**

Narcissism correlates positively with hostility and antagonism, dominance and competitiveness, and Type A behavior, all of which are related in turn to cardiovascular disease (Booth-Kewley & Friedman, 1987; Houston, Babyak, Chesney, Black, & Ragland, 1997;
Kaplan, Manuck, Clarkson, & Prichard, 1985; Miller, Smith, Turner, Gutjarro, & Hallet, 1996). The pathophysiological link between these psychological traits and cardiovascular disease may involve excessive sympathetically mediated cardiovascular reactivity to psychological stress (Blascovich & Katkin, 1993; Kaplan et al., 1985; Krantz & Manuck, 1984; Miller et al., 1996; Obrist, 1981; Wright, Contrada, & Glass, 1985).

Several studies have demonstrated that sympathetic cardiovascular reactivity to stress is positively related to hostility and Type A behavior (e.g., Burns, Friedman, & Katkin, 1992; Contrada et al., 1982; Harbin, 1989; Larson & Langer, 1997; Lyness, 1993; Miller, Dolgow, Friese, & Sita, 1998; Suls & Wan, 1993; Wright et al., 1985). These effects tend to be strongest for those measures that reflect β-adrenergic sympathetic effects on the heart, such as pre-ejection period, cardiac output, and systolic blood pressure. Moreover, research with humans (Smith, Limon, Gallo, & Ng, 1996) and monkeys (Kaplan et al., 1985) has demonstrated that cardiovascular reactivity to stress is positively related to dominance. Finally, Rasmussen, Willingham, and Glover (1996) found that unstable self-esteem predicted heart rate and systolic blood pressure reactivity, and that cynical hostility predicted systolic and diastolic blood pressure reactivity during mental stress in men; further, the effects of cynical hostility on systolic blood pressure reactivity were mediated by unstable self-esteem. The relevance of the latter finding to narcissism stems from two lines of evidence: (a) narcissists tend to have unstable self-esteem (Rhodewalt et al., 1998), and threats to self-esteem engender hostility, anger, and aggression in narcissists (Bushman & Baumeister, 1998; Rhodewalt & Morf, 1998); and (b) narcissists use grandiosity and dominance to manage hostility and maintain self-esteem (Raskin et al., 1991). Thus, narcissism may be a fundamental personality dimension that accounts for relationships among self-esteem instability, hostility, dominance, and cardiovascular reactivity. Accordingly, it seems reasonable to predict a positive relationship between narcissism and sympathetic cardiovascular reactivity to stress.

**Psychophysiological Analysis of Narcissism**

The present experiment drew on these two separate lines of research to provide an initial psychophysiological analysis of narcissism. Several assumptions underlie this analysis. First, it assumes that normal personality and abnormal personality vary quantitatively along continuous dimensions, with personality disorders appearing at the extremes of those dimensions, so that differences between normal and abnormal personality variants are primarily quantitative rather than qualitative in nature (Cloninger, 1987; Cloninger, Svrakic, & Przybeck, 1993; Livesley, Jang, Jackson, & Vernon, 1993). Second, it assumes that many personality dimensions involve neurobiological components, and that normal and abnormal personality variants share these components (Cloninger, 1987; Cloninger et al., 1993; Fowles, 1980, 1988, 1994; Livesley et al., 1993; McBurnett, 1992; Siever & Davis, 1991). Third, it assumes that certain psychophysiological measures tap the neurobiological components of personality, either directly or indirectly (Fowles, 1980, 1988; Siever & Davis, 1991). Although there is a substantial genetic basis for many personality dimensions and relevant neurobiological systems and psychophysiological responses (Cloninger, 1987; Cloninger et al., 1993; Ditto, 1993; Fowles, 1994; Livesley et al., 1993; Lykken, Iacono, Haroian, McGue, & Bouchard, 1988; Siever & Davis, 1991), these assumptions do not preclude the role of environmental influences in nurturing and shaping neurobiological and psychophysiological features of personality (cf. Fowles, 1988; Livesley et al., 1993).

We exposed participants with high or low scores on the NPI to counterbalanced presentations of passive and active anticipatory coping tasks similar to those used in research on psychopathy (Hare, 1982; Hare et al., 1978; Ogloff & Wong, 1990; Tharp et al., 1980). In the passive coping task, the occurrence of an aversive stimulus at the end of a countdown period was unavoidable, whereas in the active coping task it was avoidable by a simple motor response. These active and passive conditions represent opposite poles of Obrist’s (1981) active–passive coping dimension, which has figured so prominently in research on cardiovascular reactivity to stress. According to Obrist (1981), β-adrenergic sympathetic effects on the heart should predominate during active rather than passive coping, particularly when environmental uncertainty and behavioral uncertainty are high (Bongard, 1995; Brener, 1987; Contrada et al., 1982; Kelsey, 1991; Kelsey et al., 1999; Light & Obrist, 1980; Sherwood, Allen, Obrist, & Langer, 1986). Therefore, we expected greater β-adrenergic cardiac reactivity during active than passive coping, especially when the active coping task occurred first.

We measured skin conductance response (SCR) frequency, heart period (HP), and pre-ejection period (PEP) during the anticipatory countdown periods of each task, as well as state anxiety immediately after each task. SCR frequency is a sensitive measure of the sympathetic nervous system response to novel or threatening stimuli (Fowles, 1980; Katkin, 1965; Kelsey, 1991). Although SCR has been used in many studies of psychopathy, it has seldom been used in research on cardiovascular disease. HP, an inverse index of heart rate, reflects both sympathetic and parasympathetic nervous system influences on the heart, whereas PEP, an inverse index of myocardial contractile force, reflects primarily β-adrenergic sympathetic influences on the myocardium (Berntson et al., 1994; Cacioppo et al., 1994; Kelsey, 1991; Sherwood et al., 1986, 1990; Siegel et al., 1970). PEP has not been measured in studies of psychopathy, and has seen surprisingly little use in studies of cardiovascular disease, although it is widely accepted as one of the best indexes of sympathetic effects on the heart. Moreover, PEP is highly sensitive to circulating epinephrine (McCubbin, Richardson, Langer, Kizer, & Obrist, 1983; Mezzacappa, Kelsey, & Katkin, 1999), so it provides an excellent index of the sympathetic adrenomedullary activation that characterizes the fight/flight response.
erature and the possibility of a fractionated sympathetic response to stress (Kelsey, 1991; Kelsey et al., 1999; Wallin, 1981), we would expect heightened PEP reactivity in those scoring high as compared to low on narcissism, especially when the task was novel or required active coping. This latter prediction is also consistent with the notion of heightened somatic anxiety and exaggerated fight/flight responding in psychopathy (Fowles, 1994; Schalling, 1978).

Method

Participants
Seventy-seven undergraduate men (ages 18 to 33 years) in psychology classes at a southern public university completed the 40-item NPI (Raskin & Terry, 1988) for extra course credit. Subsequently, we recruited 20 men with NPI scores in the upper third (range from 21 to 32, \( M = 25.0, SD = 3.7 \)) and 20 men with NPI scores in the lower third (range from 1 to 14, \( M = 9.2, SD = 3.7 \)) of this initial sample distribution to participate individually in a psychophysiological study 4 to 10 weeks later. These participants received additional credit toward a course grade. We randomly assigned equal numbers of participants with high and low NPI scores to receive either the passive or active task first, thereby counterbalancing the order of task presentation.

Setting and Instrumentation
The experiment took place in a sound-attenuated, temperature-controlled, electrically shielded recording room measuring approximately \( 2.5 \times 3.5 \times 2.5 \) m. The room contained an unobtrusive surveillance camera, a computer CRT monitor and numeric keypad, amplified audio speakers, and an intercom for communication and monitoring. Participants sat upright in a comfortable, upholstered chair throughout the experiment. An adjoining room housed all remaining equipment.

A laboratory computer controlled the pace of the experiment and the presentation of the aversive stimulus. In both tasks, the aversive stimulus was a 1 s, 100 dB(A), 1,000 Hz tone produced by a function generator (Wavetek Model 20) connected to an amplified speaker located directly in front of the participant. We verified the intensity of the tone with a sound level meter (Realistic Model 33-2050) before each experimental session. In the active coping task, the participant could avoid the occurrence of the aversive tone by pressing a key on a numeric keypad connected to the laboratory computer.

We measured HP and PEP from impedance cardiographic (ICG) and electrocardiographic (ECG) signals recorded continuously on a polygraph (Grass Model 7D) connected to an MS-DOS microcomputer system (see Kelsey & Guethlein, 1990; Kelsey et al., 1998). A Minnesota Impedance Cardiograph (Instrumentation for Medicine Model 304B) recorded basal transthoracic impedance \( (Z_0) \) and the first derivative of pulsatile changes in transthoracic impedance \( (dZ/dt) \) from a set of four disposable aluminum/mylar tape electrodes. A 4-mA, 100-kHz alternating current was passed through an array of two pairs of electrodes around the upper neck and abdomen, and the \( Z_0 \) and \( dZ/dt \) signals were recorded from an inner pair of electrodes around the base of the neck and the thoracic xiphisternal junction. The outer current electrodes were separated from the respective inner voltage electrodes by at least 3 cm (Sherwood et al., 1990). Given that the measurement of PEP is unaffected by ICG electrode configuration (Boomsma, de Vries, & Orlebeke, 1989; Sherwood, Royal, Hutcheson, & Turner, 1992), we minimized participant discomfort by placing the four electrodes on the left side of the body between the front and back midline surfaces, rather than completely encircling the body. The resulting signals from these “half-band” electrodes were indistinguishable from those recorded with traditional “full-band” electrodes. We obtained the ECG from the internal signal provided by the Minnesota ICG (Kelsey et al., 1998, 1999). We measured SCRs from the thenar and hypothenar eminences of the nonpreferred hand via two Ag-AgCl electrodes attached with appropriate adhesive collars (0.8 cm\(^2\) recording surface area) and 0.05 molar NaCl electrolyte conducting medium (Fowles et al., 1981). A constant 0.5 V signal was applied across the two electrodes, and SCRs were recorded at a sensitivity of 0.05 \( \mu \)S/mm using a high-gain preamplifier (Grass Model 7P1) with a time constant of 0.8 s.

Procedure
A female experimenter met each participant at the laboratory, and provided general information about the nature of the experimental apparatus and procedures. She informed the participant that physiological responses would be measured both at rest and during perceptual-motor tasks, and that he could withdraw at any time without penalty. After giving informed consent, the participant washed his hands and completed a second administration of the NPI. The experimenter seated the participant in the recording room and attached the physiological recording electrodes to him. The experimenter left the recording room for approximately 10 min to adjust and calibrate the physiological equipment in an adjoining room while the participant completed the first administration of the STAI. After retrieving the completed STAI, the experimenter instructed the participant to rest quietly, move as little as possible, and await further instructions. The participant sat alone during the remaining experimental procedures, and received all ensuing instructions via audiotape.

The experiment consisted of an initial 10-min pretask baseline period and two counterbalanced task periods separated by a 5-min intertask baseline period. All participants received instructions to rest quietly and relax for each of the baseline periods. Each task period consisted of 5 trials that involved a 27-s visual countdown from 9 to 1, with each numeral appearing for 3 s in the center of the CRT display in front of the participant. In the passive coping task, the unavoidable aversive tone occurred 1 s after the last numeral disappeared from the display. In the active coping task, the participant could avoid the tone by pressing the center key on the numeric keypad during the 1-s delay after the last countdown numeral. An intertrial interval, varying randomly between 36 and 39 s, followed the occurrence or successful avoidance of each tone. The experimenter briefly reentered the recording room to administer the STAI immediately after each task period. After the last task period, the experimenter removed all recording devices from the participant and debriefed him.

Dependent Measures
The synchronized ECG, \( dZ/dt \), and \( Z_0 \) recordings were saved directly to magnetic disk, and scored subsequently using an inter-
active MS-DOS microcomputer system described in detail by Kelsey and Guethlein (1990) and Kelsey et al. (1998). A trained operator scored the digitized ECG and ICG signals on a beat-to-beat basis, and then ensemble averaged them with reference to the ECG R-wave over consecutive 9-s sampling intervals (Kelsey & Guethlein, 1990; Kelsey et al., 1998; Muzzi et al., 1985) for the first 27 s of each of the last 2 min of the pretask and intertask baseline periods, and for the 27-s anticipatory countdown phase of each trial of the two task periods. Partial cardiac cycles were excluded from all averages, and occasional missing data were replaced by interpolation. We derived averaged beat-to-beat values for HP (ms), defined as the interval between the peaks of successive ECG R-waves, and ensemble averaged values for PEP (ms), defined as the interval between the peak of the ECG R-wave and the corresponding dZ/dt B-wave (Kelsey, 1991; Kelsey & Guethlein, 1990; Kelsey et al., 1998, 1999; Sherwood et al., 1990; Siegel et al., 1970). A rater blind to group status manually scored the number of nonspecific SCRs exceeding a criterion of 0.05 μS during the same sampling intervals of the last 2 min of the baseline periods and each trial of the task periods (Kelsey, 1991).

Results

Self-Report Measures

The NPI scores from the second test administration at the laboratory session ranged from 13 to 34 for the high NPI group (M = 22.3, SD = 5.4) and from 1 to 18 for the low NPI group (M = 7.8, SD = 3.9). The score of one participant in the high NPI group dropped into the low range at the second test administration; however, excluding this participant had no impact on the results, so he was retained in the high NPI group. A 2 (NPI Groups) × 2 (Task Orders) × 2 (Test Administrations) MANOVA confirmed that NPI scores were consistently higher in the high NPI group than in the low NPI group, F(1,36) = 145.20, p < .0005. The groups showed an equivalent decline in NPI scores across test administrations, F(1,36) = 17.85, p < .0005, perhaps due to changes over time or differences in setting (group versus individual administration) between testing sessions. There were no significant effects of task order on NPI scores (all p > .30), indicating successful random assignment of participants to counterbalanced task orders. Finally, the retest reliability of the NPI was excellent. The random effects intraclass correlation coefficient (Shrout & Fleiss, 1979), which takes into account the discrepancy between repeated measures as well as the rank order of scores, was .91. These results support the reliability of the original assignment of participants into high and low NPI groups.

A 2 (NPI Groups) × 2 (Task Orders) × 3 (Administrations) MANOVA of STAI scores revealed that state anxiety was significantly lower overall in the high NPI group (M = 29.2) than in the low NPI group (M = 34.7), F(1,36) = 5.91, MSE = 151.8, p < .02, r = .38. The mean of the latter group was comparable to that of normative college samples (Spielberger et al., 1970). There were no other significant effects for state anxiety.

Physiological Measures

Equipment failure resulted in lost physiological data for one participant in the high NPI group and one participant in the low NPI group, and poor dZ/dt signal quality precluded accurate scoring of PEP for another participant in the high NPI group. To equalize the cell sizes for all physiological analyses, we randomly deleted one participant from the low NPI group, leaving a final sample of 36 participants. Preliminary analyses indicated no significant group differences in physiological activity over 9-s sampling intervals, so we averaged these intervals for each baseline minute and task trial.

Baseline activity. A series of 2 (NPI Groups) × 2 (Task Orders) × 2 (Periods) × 2 (Minutes) ANOVAs of physiological activity during the last 2 min of the baseline periods revealed no significant effects (all p > .09). Thus baseline physiological activity was equivalent among groups and stable over time (see Table 1).

Task reactivity. We assessed physiological reactivity to the tasks for each measure by subtracting average values for the last minute of each baseline period from average values for each trial of the corresponding task period. Given the time-ordered nature of the experimental design, we used polynomial trend analyses, rather than general repeated measures analyses, to evaluate physiological reactivity over tasks and trials. We used a weighted Bonferroni adjustment procedure (Rosenthal & Rubin, 1983) to preserve a familywise error rate of 5% for tests of the polynomial contrasts constituting the main and interaction effects involving trials, weighting the polynomial trend components in reverse order to give lower order trends priority over higher order trends (Kelsey, 1991; Kelsey et al., 1999). Thus, the linear trend over trials was assigned a weight of four and tested at α = .02, the quadratic trend over trials was assigned a weight of three and tested at α = .015, and so forth.

A 2 (NPI Groups) × 2 (Task Orders) × 2 (Tasks) × 5 (Trials) univariate trend analysis revealed a tendency toward less overall SCR reactivity in the high NPI group (M = 0.6) than in the low NPI group (M = 0.8), F(1,32) = 3.41, MSE = 1.4, p < .075, r = .31. As Figure 1 indicates, however, this tendency varied as a function of task order, F(1,32) = 9.90, p < .004, r = .49, with significant group differences emerging only when the active task occurred first. Likewise, although active coping elicited greater SCR reactivity than passive coping, F(1,32) = 12.34, MSE = 2.2, p < .001, r = .53, this effect varied with task order, F(1,32) = 11.69, p < .002, r = .52, arising primarily when the active task occurred first. These task effects did not vary as a function of narcissism. There were significant linear and quadratic trends in SCR reactivity over trials (p < .005), and the overall linear trend varied as a function of narcissism, F(1,32) = 6.01, MSE = 0.8, p < .02, r = .40. As Figure 2 shows, SCR reactivity habituated more

| Table 1. Means (SDs) of Physiological Measures During Baseline Periods in Groups with High or Low Scores on the Narcissistic Personality Inventory (NPI) |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|
|                                 | Low NPI (n = 18) | High NPI (n = 18) |
| Measure                        | Pre-Passive     | Pre-Active      | Pre-Passive     | Pre-Active      |
|                                |                 |                 |                 |                 |
| SCR (freq)                     | 0.48            | 0.33            | 0.56            | 0.48            |
|                                | (0.70)          | (0.50)          | (0.84)          | (0.73)          |
| PEP (ms)                       | 84.4            | 84.8            | 87.6            | 87.9            |
|                                | (14.0)          | (13.2)          | (10.5)          | (11.3)          |
| HP (ms)                        | 896.9           | 846.9           | 809.5           | 818.0           |
|                                | (96.7)          | (94.1)          | (125.7)         | (115.4)         |

Note: The values represent the last minute of the respective pretask baseline periods. SCR = skin conductance response frequency; PEP = preejection period; HP = heart period.
probability levels to assess statistical significance in each case.

Tests assessed the relative contribution of each cardiac measure to a significant multivariate effect with univariate tests and F-to-remove tests (Huberty & Morris, 1989), using modified Bonferroni-adjusted probability levels to assess statistical significance in each case (Simes, 1986). A 2 (NPI Groups) × 2 (Task Orders) × 2 (Tasks) × 5 (Trials) multivariate trend analysis revealed a significant effect of narcissism on overall cardiac reactivity to the tasks, Wilks’ Λ = .711, F(2,31) = 6.29, p < .005. Overall, PEP shortened significantly more in the high NPI group (M = 1.8 ms) than in the low NPI group (M = 0.1 ms), F(1,32) = 6.67, MSE = 45.2, p < .015, r = .42, and HP lengthened significantly more in the high NPI group (M = 30.5 ms) than in the low NPI group (M = 5.4 ms), F(1,32) = 8.38, MSE = 13,857, p < .007, r = .46. F-to-remove tests indicated that HP contributed primarily to this effect, F(1,31) = 5.07, p < .04, with a marginal residual contribution from PEP, F(1,31) = 3.53, p < .07.

The active coping task elicited greater cardiac reactivity than the passive coping task, Wilks’ Λ = .722, F(2,31) = 5.97, p < .006, due to significantly greater PEP shortening during active than passive coping, F(1,32) = 12.32, MSE = 35.6, p < .001, r = .53.

However, a significant Order × Task interaction (Wilks’ Λ = .778, F(2,31) = 4.42, p < .02) indicated that this effect on PEP emerged primarily when the active task occurred first, F(1,32) = 9.09, p < .005, r = .47. More important, there was a significant Narcissism × Order × Task interaction, Wilks’ Λ = .789, F(2,31) = 4.15, p < .025. As Figure 3 shows, the differential impact of active versus passive coping on PEP reactivity occurred only in the low NPI group; the high NPI group showed the greatest PEP shortening during the first task presentation, regardless of coping condition, F(1,32) = 7.02, p < .012, r = .42. There were no significant differences in HP reactivity as a function of active versus passive coping (all p > .25). F-to-remove tests confirmed the unique contribution of PEP to these task effects, all F(1,31) > 6.85, p < .015.

There were significant linear and quadratic trends in cardiac reactivity over trials (p < .001), regardless of coping condition. However, only the quadratic trend varied as a function of narcissism, Wilks’ Λ = .647, F(2,31) = 8.47, p < .001. Both PEP and HP contributed significantly to this multivariate effect, F(1,32) = 7.97 and 7.79, MSE = 3.3 and 1.554, respectively, both p < .009, both r > .44. F-to-remove tests confirmed the independent contributions of PEP and HP to this effect, F(1,31) = 7.55 and 7.38, respectively, p < .015. As Figure 4 shows, the attenuation of PEP reactivity over trials was slower and the quadratic trend in HP reactivity was stronger in the high NPI group than in the low NPI group.

**Discussion**

These data link narcissism to a complex psychophysiological profile involving diminished SCR reactivity, heightened PEP reactivity, and enhanced cardiac deceleration in anticipation of an aversive stimulus. For all three measures, both the overall magnitude and the pattern of psychophysiological reactivity over trials varied as a function of narcissism. This psychophysiological profile resembles certain psychophysiological characteristics of psychopathy and psychological predictors of heart disease, thus providing empirical support for theoretical links between narcissism and each of these areas.

**Active Versus Passive Coping**

Consistent with Obrist’s (1981) concept of active versus passive coping and previous research (Bongard, 1995; Contrada et al.,

---

**Figure 1.** Mean skin conductance response (SCR) reactivity (changes from baseline) during passive and active coping tasks as a function of task order in groups with high or low scores on the Narcissistic Personality Inventory (NPI).

**Figure 2.** Mean skin conductance response (SCR) reactivity (changes from baseline) over task trials in groups with high or low scores on the Narcissistic Personality Inventory (NPI).
the active coping task elicited greater anticipatory shortening of PEP than did the passive coping task, indicating that β-adrenergic sympathetic effects on the heart were greater during active than passive coping. As in some prior studies (Hare, 1982; Kelsey, 1991), the active task also elicited greater SCR reactivity than did the passive task, suggesting a general tendency toward greater sympathetic reactivity during active than passive coping. No such effects emerged for HP, which lengthened similarly during both tasks, suggesting parasympathetic rather than sympathetic mediation of anticipatory heart rate reactivity (Obrist, 1981). As expected, however, the differential impact of active versus passive coping on PEP and SCR reactivity emerged mainly when the active task occurred first. Thus, the most pronounced sympathetic effects on the heart and sweat glands occurred during active coping when the environment and aversive stimulus were relatively novel (Kelsey, 1991; Kelsey et al., 1999; Light & Obrist, 1980; Obrist, 1981).

Diminished Anxiety and Electrodermal Reactivity
Consistent with predictions from the psychopathy literature, narcissism was associated with low state anxiety and diminished SCR reactivity in anticipation of an aversive stimulus. Anticipatory SCR reactivity was lower overall in the high NPI group than in the low NPI group when the active coping task occurred first. Furthermore, although the two narcissism groups showed similar SCR reactivity during the early trials of both tasks, the high NPI group exhibited faster habituation of SCR reactivity during later trials. These deficits in SCR reactivity and state anxiety suggest that narcissism may involve an impairment in the processing of information about aversive events, perhaps because of a deficit in central systems that mediate anticipatory anxiety and behavioral inhibition (Cloninger, 1987; Depue & Spoont, 1986; Fowles, 1980, 1988, 1994; Graeff, Guimarães, de Andrade, & Deakin, 1996; Gray, 1987; Hare, 1978, 1998; McBurnett, 1992). Diminished activity in such systems could account for several characteristics of narcissism besides low anxiety, including impulsivity, impatience, sensation seeking, and aggression. Moreover, deficits in the processing of aversive or distressing information may lead to a failure to recognize and respond appropriately to distress in others, thereby contributing to the characteristic lack of empathy in narcissism. Although the SCR deficits associated with narcissism were less pronounced than those generally associated with psychopathy (cf. Fowles, 1980; Hare, 1978), this discrepancy is actually consistent with Kernberg’s (1989) conceptualization of a narcissistic continuum. According to Kernberg, psychopathy emanates from extreme or pathological narcissism, which was, we hope, underrepresented in our college sample. It may be that the profound SCR deficits commonly found in psychopathy and antisocial personality disorder are actually extreme manifestations of pathological narcissism.
**Enhanced Cardiac Deceleration and Vigilant Readiness**

Narcissism was associated with enhanced heart-rate deceleration in anticipation of an aversive stimulus. The high NPI group exhibited greater anticipatory lengthening of HP as compared to the low NPI group, especially during the middle and later trials of the two tasks. This sort of anticipatory cardiac deceleration is generally mediated by the parasympathetic nervous system (Obrist, 1981), and typically occurs during selective attention and motor preparation (Brunia, 1993). Thus, these results suggest greater parasympathetic modulation of heart rate, as well as greater motor preparation, selective attention, and vigilance, in those scoring high as compared to low on narcissism. These results contrast with several findings of enhanced cardiac acceleration in psychopaths (Hare, 1978; Hare & Craig, 1974; Hare et al., 1978), as well as with Hare’s (1978) sensory rejection/active coping hypothesis of heart rate reactivity in psychopathy. Directional differences in anticipatory heart rate reactivity and associated differences in attention, information processing, and motor preparation may distinguish narcissists from psychopaths. On the other hand, the cardiac deceleration associated with narcissism is consistent with some findings from the psychopathy literature (Hare, 1982; Ogloff & Wong, 1990), as well as with the proposed alternative hypothesis of enhanced parasympathetic modulatory control of heart-rate reactivity in psychopaths.

**Enhanced Myocardial Reactivity and Mobilization of Effort**

Narcissism was characterized by enhanced PEP reactivity in anticipation of an aversive stimulus. The anticipatory shortening of PEP was greater in the high NPI group than in the low NPI group, particularly during the initial task exposure. Although the expected differential effects of active versus passive coping on PEP reactivity occurred in the low NPI group, the high NPI group showed the greatest PEP reactivity during the first task exposure, regardless of postural condition. Again, group differences in reactivity varied over trials. The two narcissism groups showed similar PEP reactivity during the initial trials of the two tasks, but the high NPI group exhibited slower habituation of PEP reactivity during subsequent trials. These results point to a positive relationship between \( \beta \)-adrenergic cardiac reactivity to stress and narcissism, and suggest a stronger fight/flight response (Fowles, 1994; Schalling, 1978) and a greater mobilization of effort in preparation for action in those scoring high as compared to low on narcissism (Kelsey, 1991; Kelsey et al., 1999; Obrist, 1981; Pribram & McGuinness, 1975; Sherwood et al., 1986). Moreover, these results suggest that narcissism may involve an indiscriminate and sustained mobilization of effort under conditions of environmental uncertainty and threat, regardless of actual coping demands or the availability of an effective coping response. Enhanced fight/flight reactivity and mobilization of effort could contribute to several characteristics of narcissism, including dominance, competitiveness, hostility, antagonism, impulsivity, and aggression.

Although our findings for PEP have no counterpart in the psychopathy literature, they are consistent with the notion of heightened somatic anxiety and exaggerated fight/flight responding in psychopathy (Fowles, 1994; Schalling, 1978). Moreover, the PEP results are generally consistent with associations between \( \beta \)-adrenergic cardiovascular hyperreactivity to stress and various psychological predictors of heart disease that are characteristic of narcissism (e.g., dominance, hostility, and Type A behavior), suggesting that narcissism may be an essential dimension underlying these traits. Taken together, the SCR and PEP findings argue against the necessity of a unified sympathetic response to stress (cf. Kelsey, 1991; Wallin, 1981) or a generalized deficit in sympathetic reactivity in narcissism.

**Autonomic Influences in Narcissism**

Although the group differences in SCR reactivity and cardiac deceleration are readily interpretable in terms of autonomic influences, the group differences in PEP reactivity might reflect autoregulatory influences involving preload (left ventricular filling) and afterload (aortic diastolic pressure) rather than sympathetic-adrenomedullary influences. The effects of narcissism on PEP reactivity to the initial task exposure and PEP reactivity over trials remained significant after controlling for HP reactivity in F-to-remove tests, so it is unlikely that these effects were attributable to preload and the Frank–Starling mechanism (cf. Kelsey et al., 1999; Obrist, Light, James, & Stroatz, 1987; Sherwood et al., 1990). Even the main effect of narcissism on overall PEP reactivity remained marginally significant after controlling for overall HP reactivity, suggesting some residual sympathetic influence. We cannot be certain about the effects of afterload on PEP reactivity because blood pressure measurements were not available in this study (Kelsey et al., 1999; Obrist et al., 1987; Sherwood et al., 1990). However, a contribution of afterload to the group differences in PEP reactivity would require a drop in blood pressure in the high NPI group during anticipatory stress, which seems unlikely given the aversive nature of the tasks used in this study (Obrist, 1981). Although it might be tempting to suggest that a hypotensive response accompanied the SCR hyporeactivity associated with narcissism, the best available evidence indicates that there is little or no covariation in the sympathetic control of blood pressure and electrophysiological activity (Wallin, 1981). Furthermore, research indicates that preload and afterload exert negligible effects on PEP when posture remains constant (Bernston et al., 1994; Cacioppo et al., 1994; Obrist et al., 1987), as in the present experiment. Therefore, it seems more likely that \( \beta \)-adrenergic sympathetic effects on the heart, rather than preload or afterload, were primarily responsible for most of the group differences in PEP reactivity during anticipatory stress.

The convergent pattern of SCR and PEP reactivity during active versus passive coping suggests a unified sympathetic nervous system response to stress, whereas the divergent pattern of SCR hyporeactivity and PEP hyperreactivity associated with narcissism suggests a fractionated sympathetic response (Kelsey, 1991; Obrist, 1981; Wallin, 1981). This sympathetic response fractionation occurred in the context of apparent parasympathetic influences on HP, suggesting that narcissism may involve coactivation of autonomic influences on the heart (Bernston et al., 1994; Cacioppo et al., 1994). Nevertheless, describing this complex psychophysiological pattern in terms of sympathetic response fractionation and autonomic coactivation does little to elucidate its connections with the psychological and behavioral characteristics of narcissism. Fortunately, there are several theoretical models that may explain these connections.

**Theoretical Models**

Based on Gray’s motivational theory (Gray, 1987), Fowles (1980, 1988, 1994) has proposed that low anxiety and diminished SCR reactivity in anticipation of aversive events arise from a deficiency in the processing of aversive information by the BIS. Accordingly, our data on state anxiety and SCR reactivity suggest that narcissism may involve deficiencies in behavioral inhibition and aversive information processing similar to those ascribed to psychopathy. Unfortunately, Fowles’ model cannot account for our cardiovas-
cular data. His model gives no consideration to PEP, but proposes that heart rate (and its reciprocal, heart period) reflects the processing of appetitive information by the BAS. As the appetitive BAS presumably interacts with the aversive BIS in a reciprocal, antagonistic manner, a deficient BIS may release activity in the BAS, resulting in cardiac acceleration (Fowles, 1980, 1988). However, cardiac deceleration, rather than acceleration, accompanied the SCR hyporeactivity that we observed in narcissism. Although PEP shortening might indicate an increase in BAS activity, it seems more likely that it reflects activity in the unconditioned fight/flight system described by Gray (1987), especially because stimulus and task novelty were more important than coping requirements in determining PEP reactivity in narcissists.

The Pribram and McGuinness (1975) model of arousal, activation, and effort appears to provide a better explanation of the psychophysiological response pattern that emerged for narcissism. According to this model, an arousal system regulates externally triggered, reflexive responses to environmental stimuli, including aversive stimuli. The orienting response is the fundamental psychophysiological reflex of the arousal system. This system includes the same neural circuitry as the BIS described by Gray (1987; Fowles, 1994; McBurnett, 1992). Thus the SCR hyporeactivity that we observed in narcissism may reflect a deficit in arousal and reflexive reactivity to external stimulation. In contrast, an activation system regulates internally generated selective attention, vigilance, and tonic motor readiness. Pribram and McGuinness (1975) suggested that tonic heart-rate deceleration, which is typically observed during selective attention and motor preparation (Brunia, 1993; Obrist, 1981), is the fundamental psychophysiological characteristic of the activation system. Thus the enhanced cardiac deceleration that we observed in narcissism may reflect heightened activation and internally generated attention. Finally, an effort system regulates the arousal and activation systems by coordinating and integrating information about environmental stimuli and behavioral responses. Consequently, this system is particularly responsive to environmental and task novelty (Kelsey et al., 1999). The fight/flight response is the fundamental reflex associated with the effort system. Thus, the PEP hyperreactivity that we observed in narcissism may reflect heightened effort. In sum, the Pribram and McGuinness model suggests that the SCR hyporeactivity, enhanced cardiac deceleration, and PEP hyperreactivity that we found in narcissism reflect respectively hypoarousal, hyperactivation, and heightened effort during the processing of aversive information.

Although the psychophysiological characteristics of narcissism may arise from multiple neurobehavioral systems, a deficit in central serotonergic inhibitory control may form the cornerstone of the narcissistic psychobiological profile. Several psychobiological theories of personality and psychopathology emphasize the importance of a central serotonergic system in the inhibitory control of behavior (Cloninger, 1987; Depue &Spoont, 1986; Fowles, 1994; Graeff et al., 1996; Gray, 1987; McBurnett, 1992; Pribram & McGuinness, 1975). Notwithstanding minor differences in terminology and emphasis, these theories generally postulate that a central serotonergic system promotes anticipatory anxiety and aversive conditioning while exerting inhibitory control over two other systems: (a) a central dopaminergic system that promotes behavioral activation (Cloninger, 1987; Cloninger et al., 1993; Depue & Spoont, 1986; Fowles, 1994; Gray, 1987) and tonic motor readiness (Pribram & McGuinness, 1975), and (b) a central neuroendocrine system that controls the fight/flight response (Fowles, 1994; Graeff et al., 1996; McBurnett, 1992; Pribram & McGuinness, 1975). In terms of the two major models described above, these three central neural systems correspond respectively to Gray’s behavioral inhibition, behavioral activation, and fight/flight systems (Fowles, 1994; Gray, 1987; McBurnett, 1992), and to Pribram’s arousal, activation, and effort systems (Pribram & McGuinness, 1975).

Several lines of evidence support the relevance of this general model to the psychophysiological characteristics of narcissism. First, Graeff et al. (1996) demonstrated that pharmacological manipulations of central serotonergic function in rats and humans altered anxiety and SCR reactivity in anticipation of aversive events, as well as aspects of the fight/flight response. Although they did not evaluate cardiovascular function, their theoretical framework suggests that impairments of serotonergic function should enhance PEP reactivity by disinhibiting the fight/flight response. Second, Quik and Sourkes (1977) demonstrated that a decrease in central serotonergic neurotransmission coupled with an increase in central dopaminergic neurotransmission promoted adrenomedullary synthesis of epinephrine, the essential hormone of the fight/flight response and a major determinant of PEP reactivity (McCubbin et al., 1983; Mezzacappa et al., 1999). Third, recent studies have linked aggression in monkeys (Kyes, Botchin, Kaplan, Manuck, & Mann, 1995) and aggression, impulsivity, and hostility in men (Manuck et al., 1998) to reduced central serotonergic function, as indexed indirectly by low prolactin responses to fenfluramine challenge. Thus, converging lines of evidence suggest that diminished central serotonergic function may contribute fundamentally to important psychophysiological and behavioral characteristics of narcissism and psychopathy. Moreover, the impact of reduced central serotonergic function may extend to cardiovascular disease as well, given recent evidence of an inverse relationship between the prolactin response to fenfluramine challenge and resting blood pressure in humans (Muldoon et al., 1998).

Conclusions

Consistent with factor analyses of self-report data (Emmons, 1984; Raskin & Terry, 1988), our psychophysiological data indicate that narcissism is a multidimensional construct. These dimensions may be grounded in a limited set of interacting neurobehavioral systems (Cloninger, 1987; Cloninger et al., 1993; Fowles, 1994; Gray, 1987; McBurnett, 1992; Pribram & McGuinness, 1975). Indeed, many of the psychophysiological and behavioral characteristics of narcissism may hinge on a fundamental deficit in central serotonergic function. Although recent experimental work on narcissism has concentrated on demonstrating psychosocial and behavioral manifestations of narcissistic traits within interpersonal contexts involving threats to self-esteem (Bushman & Baumeister, 1998; Kernis & Sun, 1994; Morf & Rhodewalt, 1993; Rhodewalt & Morf, 1998), our data indicate that psychophysiological manifestations of narcissistic traits are apparent even in a relatively simple personal context involving the threat of an impending aversive event.

Our data provide psychophysiological support for theoretical links between narcissism and psychopathy, and between narcissism and psychological predictors of heart disease. Future research on psychopathy and antisocial personality disorder may benefit from a functional analysis of the role of narcissism in these disorders (Harpur et al., 1989; Patrick, 1994; Zagon & Jackson, 1994), as well as from the addition of PEP as an index of sympathetic cardiac reactivity to aversive stimuli. Moreover, in line with recent recommendations (Lenfant, 1998), future cardiovascular research may benefit by considering narcissism as an underlying personality dimension that may account for the aggregation of various
psychosocial risk factors for cardiovascular disease. Bushman and Baumeister (1998) and Rhodewalt and Morf (1998) have demonstrated that experimental manipulations involving threats to self-esteem evoke hostility, anger, and aggression in narcissists. These experimental manipulations are similar to many of the harassment manipulations used in research on cardiovascular reactivity to stress. Moreover, Raskin et al. (1991) have demonstrated that narcissistic grandiosity and dominance moderate hostility and bolster self-esteem. Thus, narcissism may provide a functional context for understanding the role of factors such as hostility and dominance in the development of cardiovascular disease. Finally, recent research by Pine et al. (1996) links risk factors for antisocial behavior and delinquency to those for cardiovascular disease. Our data suggest that narcissism may provide a foundation for this linkage. Thus, research on narcissism may elucidate important similarities and differences in the psychophysiological processes and clinical outcomes associated with psychopathy and psychological predictors of cardiovascular disease.

REFERENCES


Psychophysiological characteristics of narcissism


(Received January 10, 2000; Accepted June 20, 2000)