Online appendix for the paper

SeaLion: An Eclipse-based IDE for Answer-Set Programming with Advanced Debugging Support
published in Theory and Practice of Logic Programming

PAULA-ANDRA BUSONIU¹, JOHANNES OETSCH¹,
JÖRG PÜHRER¹, PETER SKOČOVSKÝ², HANS TOMPITS¹∗
¹ Technische Universität Wien,
Institut für Informationssysteme 184/3,
Favoritenstrasse 9-11, A-1040 Vienna, Austria,
² Universidade Nova de Lisboa,
CENTRIA and Departamento de Informatica,
2829-516 Caparica, Portugal,
(e-mail: {andra.busoniu,aifargonos}@gmail.com)
(e-mail: {oetsch,puehrer,tompits}@kr.tuwien.ac.at)

submitted 10 April 2013; revised 23 June 2013; accepted 5 July 2013

Appendix A The Source Code of the Example Program for Stepping

% INPUT %
% Having a grid of cells, some of which contain natural numbers,
row(1..4).
col(1..4).
number(c(3,2), 3).
number(c(4,4), 1).

% DEFINE %
cell(c(Y,X)) :- row(Y), col(X).
maxcol(X) :- col(X), not col(X+1).
imincol(X) :- col(X), not col(X-1).
minrow(Y) :- row(Y), not row(Y+1).
minrow(Y) :- row(Y), not row(Y-1).

% GENERATE %
% (i) each cell is either black or white,
{white(C) : cell(C)}.
black(C) :- cell(C), not white(C).

∗ This work was partially supported by the Austrian Science Fund (FWF) under project P21698.
% CHECK %
% (ii) cells with numbers are white,
:- black(C), number(C, _).

% (iii) there are no 2x2 blocks of black cells,
:- black(c(Y,X)), black(c(Y+1,X)), black(c(Y,X+1)), black(c(Y+1,X+1)).

% (iv) all black cells are transitively connected,
black_reach(C1, C2) :- black(C1), black(C2), adjacent(C1, C2).
black_reach(C1, C3) :- black_reach(C1, C2), black(C3), adjacent(C2, C3).
:- black(C1), black(C2), not black_reach(C1, C2).

% (v) each maximal group of white cells that are transitively connected
% must contain exactly one cell with a number;
% this number must be the number of cells in the group,

group(C, C) :- number(C, _).

group(C1, C2) :- group(C3, C2), adjacent(C3, C1), white(C1).

:- number(C1, N), not N(group(C2, C1) : cell(C2))N.

in_group(C) :- group(C, _).

:- white(C), not in_group(C).

:- white(C1), not 1(group(C1, C2) : number(C2, _))1.
Appendix B Additional Screenshots

Fig. B1. Reviewing file changes implied by renaming predicate \texttt{minrow/2} to \texttt{mnRow/2}.

Fig. B2. \texttt{SeaLion}'s interpretation compare view.
Fig. B.3. Selecting two source files in Eclipse’s launch configuration dialog.

Fig. B.4. Launching in debug mode.

Fig. B.5. Jump view.

Fig. B.6. Truth Assignment view.

Fig. B.7. Filtering active instances
Fig. B8. A UML object diagram based on the model of Fig. 4.

Fig. B9. Another UML object diagram based on the model of Fig. 4. Concepts and relations displayed in red indicate different violations of the domain constraints in the visualised interpretation.
Fig. B 10. A generic visualisation of a spanning tree interpretation (the layout of the graph has been manually optimised in the editor).

Fig. B 11. A customised visualisation of an instance of the 8-queens problem.