Online appendix for the paper

Fuzzy Answer Set Computation via Satisfiability Modulo Theories

published in Theory and Practice of Logic Programming

MARIO ALVIANO
University of Calabria, Italy

RAFAEL PEÑALOZA
Free University of Bozen-Bolzano, Italy

submitted 30 June 2015; revised 04 July 2015; accepted 14 July 2015

Appendix A Proofs

Proposition 1
For every FASP program Π, it holds that $\Pi \equiv_{At(\Pi)} simp(\Pi)$, i.e.,

$$|SM(\Pi)| = |SM(simp(\Pi))|$$

and

$$\{I \cap At(\Pi) | I \in SM(\Pi)\} = \{I \cap At(\Pi) | I \in SM(simp(\Pi))\}.$$

Proof
Since each rule is rewritten independently, we can prove $\Pi \equiv_{At(\Pi)} (\Pi \setminus \{r\}) \cup simp(\{r\})$, where r is some rule in Π. We use structural induction on r. The base case, i.e., r is of the form $\alpha \leftarrow \beta$ with $\alpha \in B$ and $\beta \in B$, is trivial because $simp(\{\alpha \leftarrow \beta\}) = \{\alpha \leftarrow \beta\}$. Now, consider r of the form $\alpha \leftarrow \neg \beta$. We have to show $\Pi \equiv_{At(\Pi)} \Pi'$, where $\Pi' := (\Pi \setminus \{r\}) \cup \{\alpha \leftarrow p, p \leftarrow \beta\}$. For $I \in SM(\Pi)$, define I' such that $I'(p) := I(\beta)$, and $I'(q) := I(q)$ for all $q \in At(\Pi)$. We have that $I' \in SM(\Pi')$. Moreover, for any $J \in SM(\Pi')$ it holds that $J(p) = J(\beta)$ because the only head occurrence of p in Π' is in $p \leftarrow \beta$. It turns out that $J \cap At(\Pi)$ belongs to $SM(\Pi)$. The remaining cases are given in (Mushthofa et al. 2014).

Theorem 1
Checking coherence of FASP programs is Σ^P_2-hard already in the following cases: (i) all connectives are \otimes; (ii) head connectives are ∇, and body connectives are $\bar{\nabla}$ (or \otimes); and (iii) head connectives are \oplus, and body connectives are $\bar{\nabla}$ (or \otimes) and \oplus.

Proof

We start by giving the common properties that will be used to prove each part of the theorem. We reduce the satisfiability problem for 2-QBF formulas to FASP coherence testing. Let \(\phi \) be \(\exists x_1, \ldots, x_m \forall x_{m+1}, \ldots, x_n \bigwedge_{i=1}^{k} L_{k,1} \land L_{k,2} \land L_{k,3} \), where \(n > m \geq 1, k \geq 1 \).

For each \(\odot \in \{ \vee, \oplus, \odot \} \), our aim is to build a FASP program \(\Pi^\circ_{\phi} \) such that \(\phi \) is satisfiable if and only if \(\Pi^\circ_{\phi} \) is coherent.

In the construction of \(\Pi^\circ_{\phi} \) we use the mapping \(\sigma \) such that \(\sigma(x_i) := x_i^T \), and \(\sigma(\neg x_i) := x_i^F \), for all \(i \in [1..n] \). Moreover, \(\Pi^\circ_{\phi} \) will have atoms \(sat \), and \(x_i^T, x_i^F \) for all \(i \in [1..n] \), and its models will satisfy the following properties, for a fixed truth degree \(d \in [0,1] \):

1. \(I \models \Pi^\circ_{\phi} \) implies \(I \models sat \) = 1;
2. \(I \models \Pi^\circ_{\phi} \) implies either \(I(x_i^T) = 1 \land I(x_i^F) = d \), or \(I(x_i^T) = 1 \land I(x_i^F) = d \), for all \(i \in [1..n] \);
3. \(I \models \Pi^\circ_{\phi} \) and \(I \models sat \) = 1 implies \(I(x_i^T) = I(x_i^F) = 1 \), for all \(i \in [m+1..n] \);
4. \(J \subset I \) and \(J \models (\Pi^\circ_{\phi})^J \) implies \(J \models sat \) = \(d \) and either \(I(x_i^T) = 1 \land I(x_i^F) = d \), or \(I(x_i^T) = 1 \land I(x_i^F) = d \), for all \(i \in [1..n] \).

We will then define a mapping between assignments for \(x_1, \ldots, x_m \) and interpretations of \(\Pi^\circ_{\phi} \). Let \(\nu \) be a Boolean assignment for \(x_1, \ldots, x_m \). Define \(I^\phi_{\nu} \) to be the interpretation such that: \(I^\phi_{\nu}(x_i^T) \) equals 1 if \(\nu(x_i) = 1 \), and \(d \) otherwise, for all \(i \in [1..m] \); \(I^\phi_{\nu}(x_i^F) \) equals 1 if \(\nu(x_i) = 0 \), and \(d \) otherwise, for all \(i \in [1..m] \); \(I^\phi_{\nu}(x_i) = 1 \) for all \(i \in [m+1..n] \); and \(I^\phi_{\nu}(sat) = 1 \). Moreover, for an extended Boolean assignment for \(x_1, \ldots, x_n \), we define \(I^\phi_{\nu} \) to be the interpretation such that: \(I^\phi_{\nu}(x_i^T) \) equals 1 if \(\nu'(x_i) = 1 \), and \(d \) otherwise, for all \(i \in [1..n] \); \(I^\phi_{\nu}(x_i^F) \) equals 1 if \(\nu'(x_i) = 0 \), and \(d \) otherwise, for all \(i \in [1..n] \); and \(I^\phi_{\nu}(sat) = d \). These mappings will allow us to define one-to-one mappings between satisfying assignments of \(\phi \) and stable models of \(\Pi^\circ_{\phi} \), and between unsatisfying assignments of \(\phi \) and minimal models of reducts (counter models of \(\Pi^\circ_{\phi} \)).

Proof of (ii). We adapt the construction by (Eiter and Gottlob 1995). The program \(\Phi^\circ_{\phi} \) is the following:

\[
\begin{align*}
x_i^T \forall x_i^F & \leftarrow 1 \quad \forall i \in [1..n] \\
x_i^T & \leftarrow sat \quad x_i^F & \leftarrow \neg sat \quad 0 & \leftarrow \neg sat \\
\text{sat} & \leftarrow \sigma(L_{k,1}) \bigwedge \sigma(L_{k,2}) \bigwedge \sigma(L_{k,3}) & \forall i \in [1..k]
\end{align*}
\]

(A1)

(A2)

(A3)

The program \(\Phi^\circ_{\phi} \) has the four properties given above for \(d = 0 \). Any model of \(\Phi^\circ_{\phi} \) is of the form \(I^\phi_{\nu} \), for some assignment \(\nu \) for \(x_1, \ldots, x_m \). If we consider the reduct \((\Phi^\circ_{\phi})^J \), the rule \(0 \leftarrow \neg sat \) is replaced by \(0 \leftarrow 0 \). Any minimal model strictly contained in \(I^\phi_{\nu} \) will be of the form \(J^\nu \), for some assignment \(\nu \) extending \(\nu \). Such a \(J^\nu \) would imply that \(\nu'(\psi) = 0 \), and therefore \(\nu(\phi) = 0 \). On the other hand, if such a \(J^\nu \) does not exist, it means that \(sat \) is necessarily 1; if there is \(i \in [1..k] \) such that \(\sigma(L_{k,1}) \bigwedge \sigma(L_{k,2}) \bigwedge \sigma(L_{k,3}) \) is necessarily 1; if all \(\nu \) extending \(\nu \) are such that \(\nu'(\psi) = 1 \); if \(\nu(\psi) = 1 \). Hence, we have that \(\phi \) is satisfiable if \(\Pi^\circ_{\phi} \) is coherent.

To complete this part of the proof, it is enough to replace (A3) by

\[
\text{sat} \leftarrow \sigma(L_{k,1}) \otimes \sigma(L_{k,2}) \otimes \sigma(L_{k,3}) \quad \forall i \in [1..k]
\]

(A4)
because any model and counter model of \(\Pi_\phi \) give a Boolean interpretation to \(\sigma(L_{k,1}) \otimes \sigma(L_{k,3}) \).

Proof of (iii). This is essentially folklore. Having \(\oplus \) in rule bodies allows to crispify a variable \(p \) by means of the common pattern \(p \leftarrow p \oplus p \). The program \(\Pi_\phi \) is thus

\[
\begin{align*}
x_i^T \oplus x_i^F &\leftarrow 1 & \quad \forall i \in [1..n] \\
x_i^T &\leftarrow x_i^T \oplus x_i^T & \quad \forall i \in [1..n] \\
x_i^F &\leftarrow x_i^F \oplus x_i^F & \quad \forall i \in [1..n] \\
x_i^T &\leftarrow \text{sat} & \quad \forall i \in [0..n] \\
x_i^F &\leftarrow \text{sat} & \quad \forall i \in [0..n] \\
0 &\leftarrow \sim\text{sat} & \quad \forall i \in [0..n] \\
0 &\leftarrow \text{sat} \oplus \text{sat} & \quad \forall i \in [0..n] \\
\text{sat} &\leftarrow \sigma(L_{k,1}) \oplus \sigma(L_{k,2}) \oplus \sigma(L_{k,3}) & \quad \forall i \in [1..k]
\end{align*}
\]

(A5)
(A6)
(A7)

The same argument used for (ii) proves that \(\phi \) is satisfiable iff \(\Pi_\phi \) is coherent. The same holds if (A7) is replaced by (A4).

Proof of (i). This is the most sophisticated construction. The program \(\Pi_\phi \) is

\[
\begin{align*}
x_i^T \oplus x_i^F &\leftarrow 0.5 & \quad \forall i \in [1..n] \\
x_i^T \otimes x_i^T \otimes x_i^T &\leftarrow x_i^T \otimes x_i^T & \quad \forall i \in [1..n] \\
x_i^F \otimes x_i^F \otimes x_i^F &\leftarrow x_i^F \otimes x_i^F & \quad \forall i \in [1..n] \\
x_i^T &\leftarrow \text{sat} & \quad \forall i \in [0..n] \\
x_i^F &\leftarrow \text{sat} & \quad \forall i \in [0..n] \\
0 &\leftarrow \sim\text{sat} & \quad \forall i \in [0..n] \\
0 &\leftarrow \text{sat} \oplus \text{sat} & \quad \forall i \in [0..n] \\
\text{sat} &\leftarrow \sigma(L_{k,1}) \otimes \sigma(L_{k,2}) \otimes \sigma(L_{k,3}) & \quad \forall i \in [1..k]
\end{align*}
\]

(A8)
(A9)
(A10)
(A11)
(A12)

This program \(\Pi_\phi \) has the four properties given at the beginning of this proof, but for \(d = 0.5 \). (Note that rule \(\text{sat} \leftarrow 0.5 \) was added to have a uniform proof with the previous parts, but the construction would work also without such a rule.) In fact, all atoms must be assigned a truth degree of 0.5 or 1. Hence, the interpretation of \(\sigma(L_{k,1}) \otimes \sigma(L_{k,2}) \otimes \sigma(L_{k,3}) \) will be 1 if \(\sigma(L_{k,1}), \sigma(L_{k,2}), \sigma(L_{k,3}) \) are 1, and less than or equal to 0.5 otherwise. We can thus rely on the argument given in the proof of (ii). \(\square \)

Theorem 2

Let \(\Pi \) be FASP program. If \(\Pi \) is HCF then \(\Pi \equiv_{A_{t}(\Pi)} \text{shift}(\Pi) \).

Proof

Since the shift is performed independently on each rule of \(\Pi \), it suffices to show \(\Pi' \cup \{p_1 \odot \cdots \odot p_n \leftarrow \beta\} \equiv_{A_{t}(\Pi)} \Pi' \cup \text{shift}(\{p_1 \odot \cdots \odot p_n \leftarrow \beta\}) \), where \(\Pi' \cup \{p_1 \odot \cdots \odot p_n \leftarrow \beta\} = \Pi \), \(n \geq 2 \), and \(\odot \in \{\odot, \otimes\} \). To simplify the presentation, \(\beta \) is assumed to be a propositional atom. Moreover, since \(\Pi \) is HCF, w.l.o.g. we can assume that, for \(1 \leq i < j \leq n \), \(p_i \) does not reach \(p_j \) in \(\Pi \). In each part of the proof, we will provide a one-to-one mapping between the (minimal) models of the original program and the models of shifted program. Moreover, we will give a mapping of the counter model of the original program into the counter models of the shifted program, and vice versa.

Proof of \(\oplus \). \(I \models \Pi' \cup \{p_1 \oplus \cdots \oplus p_n \leftarrow \beta\} \) iff \(I \models \Pi' \cup \text{shift}(\{p_1 \oplus \cdots \oplus p_n \leftarrow \beta\}) \) holds because \(I(p_1) + \cdots + I(p_n) \geq I(\beta) \) iff

\[
I(p_i) \geq I(\beta) + \sum_{j \in [1..n], j \neq i} (1 - I(p_j)) - (n - 1) = I(\beta) - \sum_{j \in [1..n], j \neq i} I(p_j)
\]
for all $i \in [1..n]$. Let I be a model of the two programs.

For all $J \subset I$, it holds that $J \models (\Pi')^I \cup \{p_1 + \cdots + p_n \leftarrow \beta\}^I$ implies that $J \models (\Pi')^I \cup \text{shift}(\{p_1 + \cdots + p_n \leftarrow \beta\})^I$ because $J(p_1) + \cdots + J(p_n) \geq J(\beta)$ if $J(p_i) \geq J(\beta) + \sum_{j \in [1..n], j \neq i}(1 - J(p_j))$ for all $i \in [1..n]$, which implies

$$J(p_i) \geq J(\beta) + \sum_{j \in [1..n], j \neq i}(1 - J(p_j)) - (n - 1) = J(\beta) - \sum_{j \in [1..n], j \neq i} I(p_j),$$

by assumption $J(p_j) \leq I(p_j)$ for all $p_j \in [1..n]$.

For the converse direction, we show that for any interpretation $J \subset I$ such that $J \models (\Pi')^I \cup \text{shift}(\{p_1 + \cdots + p_n \leftarrow \beta\})^I$, there is K such that $J \subseteq K \subset I$ and $K \models (\Pi')^I \cup \{p_1 + \cdots + p_n \leftarrow \beta\}^I$. Let us assume that $\{p_1 + \cdots + p_n \leftarrow \beta\} \neq \emptyset$, and that $J(p_i) < I(p_i)$ for some $i \in [1..n]$, otherwise the proof is immediate. We define the following non-deterministic sequence: $K_0 := J$; for $i \in [0..n-1]$, K_{i+1} is any subset minimal model of $(\Pi')^I$ such that $K_i \subseteq K_{i+1} \subset I$, and $K_{i+1} = \text{min}(I(p_{n-i}), m)$, where $m = \max(K_i(p_{n-i}), K_i(\beta) - \sum_{j \in [1..n], j \neq i} K_i(p_j))$. The sequence is well defined because in K_{i+1} we are possibly increasing the truth degree of p_{n-i}, which cannot cause an increase of any p_j with $j < n - i$ by assumption. Intuitively, we possibly increase the truth degree of p_1, \ldots, p_n in order to satisfy the original rule $p_1 + \cdots + p_n \leftarrow \beta$, and we do this by preferring atoms with higher indices. Hence, we have $K_n \subset I$ and $K_n \models (\Pi')^I \cup \{p_1 + \cdots + p_n \leftarrow \beta\}^I$.

Proof for \otimes. For an interpretation I, define I' to be such that: $I'(p) = I(p)$ for all $p \in \text{At}(\Pi)$; $I'(q) = 1$ if $I(\beta) > 0$, and 0 otherwise. We follow the line of the previous proof. Let I be an interpretation such that $I(\beta) > 0$, otherwise the proof is immediate. Then, $I(q) = 1$, and I is a minimal model of $\Pi'' \cup \{p_1 + \cdots + p_n \leftarrow \beta\}$ if and only if I' is a minimal model of $\Pi'' \cup \text{shift}(\{p_1 + \cdots + p_n \leftarrow \beta\})$ because $I(p_1) + \cdots + I(p_n) - (n - 1) \geq I(\beta)$ if $I(p_i) \geq I(\beta) + \sum_{j \in [1..n], j \neq i}(1 - I(p_j))$, for all $i \in [1..n]$. Let I be a minimal model of Π with $I(\beta) > 0$.

For all $J \subset I$, we have that $J \models (\Pi'')^I \cup \{p_1 + \cdots + p_n \leftarrow \beta\}^I$ implies that $J' \models (\Pi'')^I \cup \text{shift}(\{p_1 + \cdots + p_n \leftarrow \beta\})^I$ because $J(p_1) + \cdots + J(p_n) - (n - 1) \geq J(\beta)$ if $J(p_i) \geq J(\beta) + \sum_{j \in [1..n], j \neq i}(1 - J(p_j))$ for all $i \in [1..n]$, which itself implies $J'(p_i) \geq J(\beta) + \sum_{j \in [1..n], j \neq i}(1 - I(p_j))$ since by assumption $J'(p_j) = J(p_j) \leq I(p_j)$ for all $p_j \in [1..n]$.

For the converse direction, we only change the non-deterministic sequence from the previous proof as follows: $K_0 := J$; for $i \in [0..n-1]$, K_{i+1} is any subset minimal model of $(\Pi'')^I$ such that $K_i \subseteq K_{i+1} \subset I$, and $K_{i+1} = \text{min}(I(p_{n-i}), m)$, where $m = \max(K_i(p_{n-i}), K_i(\beta) + \sum_{j \in [1..n], j \neq i}(1 - K_i(p_j)))$. We have $K_n \subset I'$.

Proof for \forall. Given an interpretation I, define I' to be such that: $I'(p) = I(p)$ for every $p \in \text{At}(\Pi)$; $I'(q_i) = 1$; and for $i \in [1..n-1]$, $I'(q_i)$ is equal to 1 if $I(p_i) > \max(I(p_j) | j \in [i + 1..n])$, and 0 otherwise. Following the line of the previous two proofs, I is a minimal model of $\Pi'' \cup \{p_1 \otimes \cdots \otimes p_n \leftarrow \beta\}$ if and only if I' is a minimal model of
Theorem 3

Let Π be a FASP program. $I \in SM(\Pi)$ if and only if $A_I \models smt(\Pi)$.

Proof

We use structural induction to prove that $I(\alpha) = f(\alpha)^{A_I}$ holds for any expression or term α, and for $f \in \{out, inn\}$.

- The base cases are immediate: for $c \in [0, 1]$, $I(c) = c^{A_I} = f(c)^{A_I}$ by definition; for $p \in At(\Pi)$, $I(p) = p^{A_I} = f(p)^{A_I}$ by definition.
- For \sim, assuming that the claim holds for α, we have $I(\sim \alpha) = 1 - I(\alpha) = 1 - out(\alpha)^{A_I} = f(\sim \alpha)^{A_I}$.
- For \oplus, assuming that the claim holds for α and β, we have
 \[I(\alpha \oplus \beta) = \min(I(\alpha) + I(\beta), 1) = \min(f(\alpha)^{A_I} + f(\beta)^{A_I}, 1) = \text{ite}(f(\alpha) + f(\beta) \leq 1, f(\alpha) + f(\beta))^{A_I} = f(\alpha \oplus \beta)^{A_I}. \]
- For \otimes, assuming that the claim holds for α and β, we have
 \[I(\alpha \otimes \beta) = \max(I(\alpha) + I(\beta) - 1, 0) = \max(f(\alpha)^{A_I} + f(\beta)^{A_I} - 1, 0) = \text{ite}(f(\alpha) + f(\beta) - 1 \geq 0, f(\alpha) + f(\beta) - 1, 0)^{A_I} = f(\alpha \otimes \beta)^{A_I}. \]
- For \forall, assuming that the claim holds for α and β, we have
 \[I(\alpha \forall \beta) = \max(I(\alpha), I(\beta)) = \max(f(\alpha)^{A_I}, f(\beta)^{A_I}) = \text{ite}(f(\alpha) \geq f(\beta), f(\alpha), f(\beta))^{A_I} = f(\alpha \forall \beta)^{A_I}. \]
- For \exists, assuming that the claim holds for α and β, we have
 \[I(\alpha \exists \beta) = \min(I(\alpha), I(\beta)) = \min(f(\alpha)^{A_I}, f(\beta)^{A_I}) = \text{ite}(f(\alpha) \leq f(\beta), f(\alpha), f(\beta))^{A_I} = f(\alpha \exists \beta)^{A_I}. \]
We can thus conclude that $I \models \Pi$ if and only if A_I is a Σ-model of the theory $\{ p \in [0, 1] \mid p \in At(\Pi) \cup \{ out(r) \mid r \in \Pi \}$ Moreover, if $I \in SM(\Pi)$ then there is no $J \subset I$ such that $J \models \Pi^I$, which is the case if and only if A_I also satisfies formula ϕ_{inn}.

Theorem 4

Let Π be a program such that $\Pi \setminus \text{bool}(\Pi)$ is acyclic. Then, $I \in SM(\Pi)$ if and only if $A_I \models rcomp(shift(simp(\Pi)))$.

Proof

Let Π' be $shift(simp(\Pi))$, and $\Pi'' = \text{bool}^+(\Pi')$. By Proposition 1 and Theorem 2, we know that $\Pi \equiv_{At(\Pi)} \Pi'$. Moreover, if $\Pi \setminus \text{bool}(\Pi)$ is acyclic then Π'' is acyclic. From the correctness of the completion proved by Janssen et al. (2012), and since $\text{supp}(p, heads(\Pi''))^A_I = \max \{ \beta^A \mid p \leftarrow \beta \in \Pi'' \} = \max \{ I(\beta) \mid p \leftarrow \beta \in \Pi'' \}$ captures the notion of support of p, we have that $I \in SM(\Pi'')$ iff $A_I \models \text{comp}(\Pi'')$. Hence, the models of $\text{rcomp}(\Pi)$ are the structures A_I such that $J \in SM(\Pi'')$ satisfying the following condition: $I(b_i)$ equals 1 if $I(p) > 0$, and 0 otherwise. These are exactly the stable models of Π'', which concludes the proof.

Lemma 1

Let Π be such that Π has atomic heads and non-recursive \oplus, \forall in rule bodies. Let I be an interpretation for Π. The least fixpoint of $T_{HI'}$ is reached in $|At(\Pi)|$ steps.

Proof

We first prove the claim for programs without \oplus. Let J_0 be the interpretation mapping everything to 0, and $J_{i+1} := T_{HI'}(J_i)$, for all $i \geq 0$. For every $i \geq 0$ and $p \in At(\Pi)$, if $J_i(p) < J_{i+1}(p)$, then there is a rule $p \leftarrow \beta \in \Pi^I$ with $J_{i+1}(p) = J_i(\beta)$. In this case, for each atom q (including numeric constants) occurring β, we say that p is inferred by q. In particular, since β can only contain \overline{a} and $\forall y$, we have the following property: ($*$) $J_{i+1}(p) \leq J_i(q)$. Let $n = |At(\Pi)|$ be the number of atoms in Π. We prove that any chain of inferred atoms has length at most $n+1$, which implies that n applications of $T_{HI'}$ give the fixpoint of the operator. Suppose on the contrary that there are p_0, \ldots, p_{n+1} such that p_0 is a numeric constant and $p_{i+1} \in At(\Pi)$ is inferred by $p_i \in At(\Pi)$, for all $i \in [0..n]$. Since $n = |At(\Pi)|$, there exist $1 \leq j < k \leq n+1$ such that $p_j = p_k$. Hence, from $J_i(p) < J_{i+1}(p)$ we have $J_{i+1}(p_{i+1}) > J_i(p_{i+1})$ for $i \in [0..n]$, and thus $J_k(p_k) > J_{k-1}(p_k) \geq J_j(p_k)$ (where the last inequality is due to the monotonicity of $T_{HI'}$). From ($*$) we have $J_{i+1}(p_{i+1}) \leq J_i(p_i)$ for $i \in [0..n]$, and thus $J_k(p_k) \leq J_j(p_j) = J_j(p_k)$. Therefore, we have $J_k(p_k) > J_j(p_k)$ and $J_k(p_k) < J_j(p_k)$, that is, a contradiction.

Let us now add non-recursive \oplus in rule bodies. If there is $i \in [0..n]$ such that p_{i+1} and p_i do not satisfy ($*$), i.e., $J_{i+1}(p_{i+1}) > J_i(p_i)$, then β must contain some occurrence of \oplus. Since \oplus is non-recursive by assumption, $\{ p_j \mid i \in [1..j] \}$ and $\{ p_j \mid [i+1..n+1] \}$ are disjoint sets. Either p_1, \ldots, p_i or p_{i+1}, \ldots, p_{n+1} must have a repeated atom, and argument used before gives a contradiction.

Theorem 5

Let Π be an HCF program with non-recursive ⊕ in rule bodies, and whose head connectives are \(\overline{\cdot}, \oplus \). If \(I \in SM(\Pi) \) then \(A^q_I \models ocomp(shift(simp(\Pi))) \). Dually, if \(A \models ocomp(shift(simp(\Pi))) \) then \(I_A \in SM(\Pi) \).

Proof

Let \(\Pi' \) be \(shift(\, simp(\Pi)\, \)\). From Proposition 1 and Theorem 2 we have \(\Pi \equiv_{At(\Pi)} \Pi' \). Moreover, \(\Pi' \) has atomic heads and non-recursive ⊕ in rule bodies. We show that stable models of \(\Pi' \) and \(\Sigma \)-models of \(ocomp(\Pi') \) are related.

First, notice that for any structure \(A \) and set of atoms \(A, \) rank\((A) \)\(^A \) equals max\(\{ r_p^A \mid p \in A \} \) if \(A \neq \emptyset \), and 0 otherwise. Moreover, osupp(\(p, heads(p, \Pi')\))\(^A \) = 1 if there is \(p \leftarrow \beta \in heads(p, \Pi) \) such that \(p^A = \beta^A \) and \(r_p^A = 1 + \text{rank}(\text{pos}(\beta))^A \).

\((\Rightarrow)\) Let \(I \in SM(\Pi') \). Let \(J_0 \) be the interpretation mapping everything to 0, and \(J_{i+1} \) be \(T_{\Pi'}(J_i) \), for \(i \geq 0 \). By Lemma 1, \(J_{n+1} = J_n \). Let \(r \) be the ranking associated with \(I \), i.e., \(r(p) \) equals the minimum index \(i \in [1..n] \) such that \(J_i(p) = J_n(p) \).

We now use induction on the rank of inferred atoms to prove the following: \(A^q_I \models p = out(\beta) \wedge r_p = 1 + \text{rank}(\text{pos}(\beta)) \). For all \(p \in At(\Pi) \) such that \(J_n(p) > 0 \) and \(r(p) = 1 \), there is a rule \(p \leftarrow \beta \in \Pi' \) such that \(J_n(\beta) = J_n(p) \) and \(\beta \) only contains numeric constants; in this case \(A^q_I \models p = out(\beta) \wedge r_p = 1 + \text{rank}(\text{pos}(\beta)) \). For \(m \in [1..n-1] \), and for all \(p \in At(\Pi) \) such that \(J_n(p) > 0 \) and \(r(p) = m + 1 \), there is a rule \(p \leftarrow \beta \in \Pi' \) such that \(J_n(\beta) = J_n(p) \) and at least one of them must satisfy \(r(q) = m \), we have \(A^q_I \models p = out(\beta) \wedge r_p = 1 + \text{rank}(\text{pos}(\beta)) \).

That \(A^q_I \models \text{comp}(\Pi') \) follows by the fact that the completion captures the notion of supported model. Hence, \(A^q_I \models ocomp(\Pi') \).

\((\Leftarrow)\) Let \(A \) be a \(\Sigma \)-model of \(ocomp(\Pi') \), and let \(I := I_A \). We shall show that \(I_A \in SM(\Pi') \). Let \(J_0 \) be the interpretation mapping everything to 0, and \(J_{i+1} = T_{\Pi'}(J_i) \), for \(i \geq 0 \).

We use induction on \(r_p^A \) to show that \(J_{r_p^A}(p) = I(p) \). If \(p^A > 0 \) and \(r_p^A = 1 \), then there is \(p \leftarrow \beta \in \Pi' \) such that \(p^A = \beta^A \) and \(\text{pos}(\beta) = 0 \); in this case \(J_1(p) = I(p) \). If \(p^A > 0 \) and \(r_p^A = m + 1 \) for some \(m \in [1..n-1] \), then \(p \leftarrow \beta \in \Pi' \) such that \(p^A = \beta^A \) and \(\max\{ r_q^A \mid q \in \text{pos}(\beta) \} = m \); since \(J_m(q) = I(q) \) for all \(q \in \text{pos}(\beta) \) by the induction hypothesis, we have \(J_{m+1}(p) = I(\beta) = I(p) \).

The proof is thus complete.

\[\square \]

References

