Appendix A Figures

This appendix contains some figures associated with the gear wheels example (Example 4.13). The first figure contains a circuit representation of the parametrised well-founded model of logic program P_w from Example 4.13.

Fig. A1. A circuit representation of the gear wheel theory $Th(A_w)$.

The next figure contains a circuit representation of the parametrised well-founded model of the following logic program $P_{w,2}$ that represent the gear wheel example.
with time ranging from 0 to 2:

\[
\begin{align*}
\text{turns}_1(0) & \leftarrow \text{turns}_2(0) & \text{turns}_2(0) & \leftarrow \text{turns}_1(0) \\
\text{turns}_1(1) & \leftarrow \text{turns}_2(1) & \text{turns}_2(1) & \leftarrow \text{turns}_1(1) \\
\text{turns}_1(2) & \leftarrow \text{turns}_2(2) & \text{turns}_2(2) & \leftarrow \text{turns}_1(2) \\
\text{turns}_2(1) & \leftarrow \text{turns}_1(0) \land \neg \text{button}_1(0) & \text{turns}_2(1) & \leftarrow \text{turns}_2(0) \land \neg \text{button}_2(0) \\
\text{turns}_1(1) & \leftarrow \neg \text{turns}_1(0) \land \text{button}_1(0) & \text{turns}_2(1) & \leftarrow \neg \text{turns}_2(0) \land \text{button}_2(0) \\
\text{turns}_1(2) & \leftarrow \text{turns}_1(1) \land \neg \text{button}_1(1) & \text{turns}_2(2) & \leftarrow \text{turns}_2(1) \land \neg \text{button}_2(1) \\
\text{turns}_2(2) & \leftarrow \neg \text{turns}_1(1) \land \text{button}_1(1) & \text{turns}_2(2) & \leftarrow \neg \text{turns}_2(1) \land \text{button}_2(1)
\end{align*}
\]
Fig. A 2. A circuit representation of the gear wheel example for up to two time points.
Appendix B Proofs

Definition-Proposition 3.1.
Let $O : L \to L$ be an operator and $f : L \to K$ a lattice morphism. We say that O respects f if for every $x, y \in L$ with $f(x) = f(y)$, it holds that $f(O(x)) = f(O(y))$.

If f is surjective and O respects f, then there exists a unique operator $O_f : K \to K$ with $O_f \circ f = f \circ O$, which we call the projection of O on K.

Proof
We prove the existence and uniqueness of O_f.
Choose $x \in K$. Since f is surjective, there is a $x' \in L$ with $f(x') = x$. We know that O_f must map x to $f(O(x'))$, hence uniqueness follows. Furthermore, this mapping is well-defined (independent of the choice of x') since O respects f.

Proposition B.1
If (x', y') is an A-refinement of (x, y), then $(f(x'), f(y'))$ is an A_f-refinement of $(f(x), f(y))$.

Proof
1. First suppose (x', y') is an application A-refinement of (x, y). Thus

$$(x, y) \leq_p (x', y') \leq_p A(x, y).$$

From the fact that f is a lattice morphism, it follows that

$$f^2(x, y) \leq_p f^2(x', y') \leq_p f^2(A(x, y)).$$

From the fact that f respects A, we then find

$$f^2(x, y) \leq_p f^2(x', y') \leq_p A_f(f^2(x, y)),$$

hence $f^2(x', y')$ is an application A_f-refinement of $f^2(x, y)$.

2. The second direction is analogous to the first. Suppose (x', y') is an unfoundedness A-refinement of (x, y). Thus $x' = x$ and

$$A(x, y', 2) \leq y' \leq y.$$

Then also $f(x') = f(x)$ and

$$f(A(x, y', 2)) \leq f(y') \leq f(y),$$

thus

$$A_f(f(x), f(y')) \leq f(y') \leq f(y)$$

and the result follows.

Lemma B.2
If O and O_f are monotone, then $f(\text{lfp}(O)) = \text{lfp}(O_f)$.

Proof
The least fixpoint of O is the limit of the sequence $\bot \to O(\bot) \to O(O(\bot)) \to \ldots$. It follows immediately from the definition of O_f that for every ordinal n, $f(O^n(\bot)) = O_f(f(\bot)) = O_f(\bot^K)$, hence the result follows. □

Proposition 3.3.
If $(x_j, y_j)_{j \leq \alpha}$ is a well-founded induction of A, then $(f(x_j), f(y_j))_{j \leq \alpha}$ is a well-founded induction of A_f. If $(x_j, y_j)_{j \leq \alpha}$ is terminal, then so is $(f(x_j), f(y_j))_{j \leq \alpha}$.

Proof
The first claim follows directly (by induction) from Proposition B.1.

For the second claim, all that is left to show is that if there are no strict A-refinements of (x_α, y_α), then there are also no strict A_f-refinements of $(f(x_\alpha), f(y_\alpha))$.

First of all, since (x_α, y_α) is a fixpoint of A, it also follows for every i that $A_f(f(x_\alpha), f(y_\alpha)) = f^2(A(x_\alpha, y_\alpha)) = (f(x_\alpha), f(y_\alpha))$. Thus, there are no strict application refinements of A_f either.

Since there are no unfoundedness refinements of (x_α, y_α), Proposition 2.1 yields that $y_\alpha = \text{lfp} \; S_{\alpha}^x$. It is easy to see that for every i, the operator $f \circ S_{\alpha}^x = S_{\alpha}^{f(x)} \circ f$. Hence, Lemma B.2 (for the operator S_{α}^x) guarantees that $f(y_\alpha) = f(\text{lfp} \; S_{\alpha}^x) = \text{lfp} \; S_{\alpha}^{f(x)}$. Thus, using Proposition 2.1 we find that there is no strict unfoundedness refinement of $(f(x_\alpha), f(y_\alpha))$.

□

Theorem 3.4.
If (x, y) is the A-well-founded fixpoint of O, then, $(f(x), f(y))$ is the A_f-well-founded fixpoint of O_f.

Proof
Follows immediately from Proposition 3.3. □

Theorem 3.6.
Suppose L is a parametrisation of K through $(f_i)_{i \in I}$. Let $O : L \to L$ be an operator and A an approximator of O such that both O and A respect each of the f_i. If (x, y) is the A-well-founded fixpoint of O, the following hold.

1. For each i, $(f_i(x), f_i(y))$ is the A_{f_i}-well-founded fixpoint of O_{f_i}.
2. If the A_{f_i}-well-founded fixpoint of O_{f_i} is exact for every i, then so is the A-well-founded fixpoint of O.

The first point immediately follows from Theorem 3.4.

Using the first point, we find that if the A_f-well-founded fixpoint of O_f is exact for every i, then $f_i(x) = f_i(y)$ for every i. Hence the definition of parametrisation guarantees that $x = y$ as well, i.e., the A-well-founded fixpoint of O is indeed exact.

\[\square\]

Proposition 4.5.
For every formula φ over Σ, $S \in (L^d_p)^2$ and $I \in 2^{2^\Sigma}$, it holds that $\varphi^S^I = (\varphi^S)^I$.

Proof
Trivial. \[\square\]

Proposition 4.6.
The lattice L^d_p is a parametrisation of 2^{2^Σ} through the mappings $(\pi_I : L^d_p \rightarrow 2^{2^\Sigma} : A \mapsto A^I)_{I \in 2^{2^\Sigma}}$.

Proof
It is clear that the mappings π_I are lattice morphisms since evaluation of propositional formulas commutes with Boolean operations. Now, for $A, A' \in L^d_p$, it holds that $A \leq A'$ if and only if for every atom $p \in \Sigma_d$, $A(p)$ entails $A'(p)$. This is equivalent to the condition that for every $p \in \Sigma_d$ and every interpretation $I \in 2^{2^\Sigma}$, $A(p)^I \leq A'(p)^I$, i.e., with the fact that for every I, $\pi_I(A) \leq \pi_I(A')$ which is what we needed to show. \[\square\]

Theorem 4.8.
If P is a positive logic program, then T_P is monotone. For every Σ-interpretation I, it then holds that $I \models wf P$ if and only if $I \models Th(lfp(T_P))$.

Proof
Follows immediately from the definition of the parametrised well-founded semantics combined with Lemma B.2. \[\square\]

Theorem 4.9.
For any parametrised logic program P, the following hold:

1. Ψ_P is an approximator of T_P.
2. For every Σ_p-structure I, it holds that $\Psi_P^I \circ \pi^I = \pi^I \circ \Psi_P$.

Proof
1. It follows immediately from the definitions that for exact interpretations $S = (A, A), \Psi_P$ coincides with $T_P \subseteq P$-monotonicity follows directly from the definition of evaluation of formulas (Definition 4.4).
2. We find that for every $S \in (L^d_P)^2$ and every $p \in 2^{\Sigma^d}$,

$$\Psi_P^I(\pi^2_I(S))(p) = \Psi_P^I(S^I)(p) = \varphi^S_I = (\varphi^S_P)^I = (\Psi_P(S)(p))^I = \pi^2_I(\Psi_P(S)(p)),$$

which indeed proves our claim. □

Lemma B.3
For every Σ^d_P-interpretation I, there are at most $|\Sigma^d|$ strict refinements in a well-founded induction of Ψ_P^I.

Proof
Every strict refinement should at least change one of the atoms in Σ^d from unknown to either true or false, hence the result follows. □

Lemma B.4
Suppose $(x_i, y_i)_{t \leq \beta}$ is a well-founded induction of T_P in which every refinement is maximally precise, i.e., either of the form $(x, y) \rightarrow T_P(x, y)$ or an unfoundedness refinement satisfying the condition in Proposition 2.1. The following hold:

- there are at most $|\Sigma^d|$ subsequent strict application refinements in $(x_i, y_i)_{t \leq \beta}$, and
- if unfoundedness refinements only happen in $(x_i, y_i)_{t \leq \beta}$ when no application refinement is possible, then there are at most $|\Sigma^d|$ unfoundedness refinements.

Proof
For the first part, we notice that every sequence of maximal application refinements maps (by π_I) onto a sequence of maximal application refinements of Ψ_P^I. Furthermore, from the proof of Proposition 3.3, it follows that if a T_P-refinement is strict, then at least one of the induced Ψ_P^I-refinements must be strict as well. The result now follows from Lemma B.3.

The second point is completely similar to the first. There can be at most $|\Sigma^d|$ strict unfoundedness refinements in any well-founded induction of Ψ_P^I. Furthermore, the condition in this point guarantees that if for some I, an unfoundedness refinement in the induced well-founded induction is not strict, then neither will any later unfoundedness refinements. Hence, the result follows. □
Theorem 5.1.
Let L_{BC} be the language of Boolean circuits. The following hold: (i) $\text{Compile}(L_{BC})$ has polynomial-time complexity and (ii) the size of the output circuit of $\text{Compile}(L_{BC})$ is polynomial in the size of P.

Proof
First, we notice that if we have a circuit representation of S, then the representation of $\Psi_P(S)$ consists of the same circuit with maximally three added layers since φ_p is a DNF for every defined atom p (a layer of negations, one of disjunctions and one of conjunctions). Furthermore, the size of these layers is linear in terms of the size of P. Similarly, the representation of an unfoundedness refinement will only be quadratically in the size of P (quadratically since computing the smallest y' is a refinement takes a linear number of applications).

The two results now follow from Lemma B.4, which yields a polynomial upper bound on the number of refinements, and which also allows us to ignore the stop conditions (in general checking whether a fixpoint is reached is a co-NP problem, namely checking equivalence of two circuits; however, we do not need to do this since we have an upper bound on the maximal number of refinements before such a fixpoint is reached). □

Proposition 5.2.
Suppose the parametrised well-founded model of P is (A, A). Let $(A_{i,1}, A_{i,2})$ be a well-founded induction of Ψ_P. Then for every i, $Th(A_{i,1}) \models Th(A) \models Th(A_{i,2})$.

Proof
Denecker and Vennekens (2007) showed that if $(x_i, y_i)_{i \leq \beta}$ is a well-founded induction of A and (x, y) the A-well-founded model of O, then for every $i \leq \beta$, it holds that

$$(x_i, y_i) \preceq_p (x, y).$$

Our proposition immediately follows from this result. □