Appendix B

Measures for linear displacement can be converted into estimates of μ, but this conversion may introduce bias. Suppose an experiment was terminated after 1 day. Then a biased estimated of μ could be calculated using equation 2:

$$\dot{\mu} \approx \frac{1}{4} \bar{d}^2$$

eqn B.1

Where \bar{d} is the average movement distance. This estimate of μ from \bar{d} underestimates the true value of motility because of the variability in the distance covered around the mean and the convex (upward curving) relationship between μ and \bar{d} (Jensen’s inequality, e.g. Hilborn & Mangel, 1997, p. 58). A better estimate of μ is achieved by including the effect of the non-linear relationship between \bar{d} and μ by using the Delta method (Hilborn & Mangel, 1997, p. 58):

$$E(g(d)) = g(\bar{d}) + \frac{1}{2} g''(\bar{d}) \text{var}(d)$$

eqn B.2

Where E denotes the mathematical expectation, g is a non-linear function linking motility and dispersal distance of individual beetles, i.c.

$$\mu_i = g(d_i, t_i) = \frac{1}{4} \frac{d_i^2}{t_i}$$

eqn B.3

g'' is the second derivative of g with respect to d, and var(d) denotes the variance of dispersal distance. The second derivative of g is

$$g''(d_i, t_i) = \frac{1}{2t_i}$$

eqn B.4

At chosen t_i, the Delta method then yields:

$$\dot{\mu} \approx \frac{1}{4} \bar{d}^2 + \frac{1}{4} \text{var}(d)$$

eqn B.5