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In Section A, we included the full set of variables for our prediction problem. Section B of this
supplemental information shows the results of the performance of causal models for the remaining
targets, including Minimum Sea Level Pressure (MSLP) and Total Integrated Precipitation. Section
B also includes results for experiments with a reduced lead time of 6 hours, using both the PC1
and PCMCI methods. The feature selection baselines for comparing the performances are defined in
Section C, followed by the results for predicting the remaining targets. Finally, Section D shows the
performance of the best models, as well as the causal predictors used in the model with the best skill
on the validation set for maximum surface wind.

A. List of Variables Used as Predictors
We provide a list of all the variables chosen from the ERA5 (3 hourly) dataset, including targets and
predictors, for preparing the ensemble of TC time series in Tab 1.

B. Optimal Number of Causal Features
Figures 3,4,5, & 6 show the comparison of M-PC1 and M-PCMCI algorithms for the selected targets
before and after temporally aligning the time series according to the time of minimum MSLP during the
lifetime of each storms in the group. We see a clear improvement in the validation sets of the aligned
dataset for both PC1 and PCMCI for all the targets.

C. Description of Machine Learning Algorithms
In this section, we provide a description of our implementations of the machine learning algorithms
tested for this work. Prior to training the algorithms, we calculated the mean and standard deviation of
each input feature in the available training data, noting that the values were considered for the set of all
storms (and not on a per-storm basis). We then used these values to standard-scale the input features,
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Figure 1. Performance of Causal ML for multiple tests by varying hyperparameter for the prediction of
Minimum MSLP by causal-MLR (a) compared to noncausal ML (Solid lines) and LSTM (dashed lines),
where as (b) shows the performance of Causal-RF compared to noncausal-RF (solid lines).

Figure 2. Same as Figure 1 but for the prediction of Total integrated Precipitation.

per Eqn. (1).
𝑧𝑖 =

𝑥𝑖 − `𝑖

𝜎𝑖

(1)

Multiple linear Regression - In order to benchmark the performance of multidata causal feature
selection, a plurality of multiple linear regression (MLR) algorithms were prepared, using the Scikit-
Learn implementation of the Linear Regression algorithm and its corresponding default parameters.
Each individual MLR algorithm was trained to predict one of three unscaled target variables (i.e., one
of MSLP, precipitation, or Surface Wind) using the selected, standard-scaled inputs being evaluated.

Random Forest Regression - To ensure that the benefit of causal feature selection extends to more
complex, nonlinear machine learning algorithms. We applied the same sets of input variables used
to train the causal and non-causal MLR models to a Random Forest Regressor (RF Regressor). The
implementation of the RF regression algorithm in this study utilizes that provided in the Scikit-Learn
package. Compared to the MLR models, the RF Regressor contains several trainable hyperparameters
that we can optimize for better prediction skills. Using the RandomizedSearchCV function, we tuned
the hyperparameters related to the depth of the model, minimum number of samples to split decision
trees, and the number of estimators. The best model that has the best cross-validation accuracy on the
training data is chosen for analysis.

The noncausal feature selection baselines that are used in the main manuscript are described below.
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Figure 3. Comparison of M-𝑃𝐶1 and M-PCMCI based Causal-MLR model performance for 6 hour
predictions without time alignment and with time lags ranging from 6 hrs to 2 days for selected targets.

Random Feature Selection is a sampling method where features are chosen randomly. Random
sampling is analogous to drawing out a set of cards after shuffling without any criteria. Our implemen-
tation of this algorithm randomly selects a set of input features (size ranging from 10 to 1000) from all
possible combinations of variables and time lags.

Lagged Correlation considers the absolute correlation between the prediction targets and different
time-lagged input features. We adopted a kitchen sink approach where we obtained the correlation
values between targets and all time-lagged variables by c. These correlation values are ranked and the
features with the highest correlations are then chosen as MLR inputs. The size of these sets of features
ranges from 10 to 1000.

XAI takes the training dataset to build a random forest regression model using Python’s scikit-
learn library. By using this baseline method, we explore whether the use of feature importance (when
nonlinear relationships between variables and targets are included) can result in a better selection of
features. The Gini feature importance as measured by the trained random forest regressors provides
an objective means to rank and select the most informative input variables. Input variables are ranked
from most important to least important based on Gini impurity-based feature importances. The top-
ranked features are then chosen to train the MLR models. Alternative feature importance methods, e.g.,
permutation feature importance or absolute Shapley values, are left for future work.

LSTM Neural Network - We prepared three Long Short-Term Memory (LSTM) recurrent neural
networks as baselines, training the LSTM models on standard-scaled input data and configuring each
LSTM to predict one of the standard-scaled target variables (i.e., one of MSLP, precipitation, or Surface
Wind). We implemented each LSTM as a sequential model using PyTorch; their architecture includes
an LSTM layer, a dropout layer, a linear hidden layer, and a linear output layer. As we targeted standard
scaled outputs, the output of the network needed to represent positive and negative values. To do this,
we set the output activation function to the identity function and we set the hidden layer activation
function to hyperbolic tangent. We selected the Adam optimizer and mean-square error loss for our
training, and proceeded to conduct a hyperparameter search using the Optuna framework. The study
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Figure 4. Performance of 𝑃𝐶1 and PCMCI models with time aligned inputs for the prediction of Max-
imum Wind (a), the relationship between hyper-parameters, inputs, and performance (b, c).

employed 10 trials that tested LSTM and hidden layers 50-100 units wide, dropout rates between 0.0
and 0.5, and learning rates between 1e−4 and 1e−3. We note that we set the number of units in the
LSTM layer and the hidden layer to be equal to each other in all conducted trials.

D. Comparison of Feature Selection Baselines
A comparison of the performance of Causal MLR to the performance of MLR models based on other
feature selection baselines for the targets, Minimum MSLP and Total Integrated Precipitation are shown
in Figures 7 and 8 respectively.

The Mean Square Error (MSE) and Mean Absolute Error (MAE) of the best model prediction of
Maximum Surface Winds, MSLP and Total integrated Precipitation on both the training, validation and
test sets for the best ML models. All metrics signify a good performance for Causal-ML with far less
number of inputs compared to the number of inputs from the best models using the Non-causal-RF and
Non-causal MLR methods. For the best ML models used, MSE are listed in Table 2 and MAE are listed
Table 3.

E. Optimal Causal Predictors
The predictors and time lags for the best causal-MLR model with time-aligned inputs for the prediction
of maximum wind speeds 1-day in advance are shown in Table 4.
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Figure 5. Same as the previous figure, but for the prediction of total integrated precipitation.

Figure 6. Same as the previous figure, but for the prediction of Minimum MSLP.
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Table 1. List of variables used from ERA5 dataset.
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ML Models Training (No. of features) Validation Test
Target Pmin (ℎ𝑃𝑎) V10 (𝑚𝑠−1) Precip ×10−3 (𝑘𝑚2) Pmin V10 Precip Pmin V10 Precip

Causal RF 13.45 (26) 3.49 (17) 35.45 (123) 28.05 6.24 63.3 24.03 6.26 92.1
Causal MLR 24.67 (17) 5.2 (31) 61.38 (90) 25.3 5.62 59.01 21.89 5.87 92.79

Non-causal RF
All 15.68 (3978) 3.91 (3978) 46.25 (3978) 34.92 7.58 100.03 24.39 6.54 102.16

Lagged 8.80 (480) 2.3 (560) 37.8 (80) 29.22 6.23 82.12 21.04 5.65 93.2
Random 8.57 (870) 2.27 (770) 27.94 (970) 38.51 7.8 105.23 27.15 7.19 105.77

Non-causal MLR

All 2.43 (3978) 0.66 (3978) 7.87 (3978) 373.54 398.33 33370.94 105.74 31.03 338.29
Lagged 15.64 (440) 12.04 (40) 60.60 (120) 31.09 14.77 91.40 17.20 11.83 85.70
Random 19.05 (420) 5.58 (130) 58.23 (290) 41.87 8.20 97.68 29.88 7.81 110.5

XAI 16.93 (240) 3.84(420) 55.34 (140) 30.90 6.05 80.32 19.92 6.38 90.7
LSTM 27.55 (3978) 6.49 (3978) 179.76 (3978) 44.00 8.80 199.29 39.44 8.02 206.12

Table 2. MSE.

ML Models Training (No. of features) Validation Test
Target Pmin (ℎ𝑃𝑎) V10 (𝑚𝑠−1) Precip ×10−3 (𝑘𝑚2) Pmin V10 Precip Pmin V10 Precip

Causal RF 2.55 (26) 1.42 (17) 0.14 (123) 3.87 1.94 0.19 3.62 1.97 0.23
Causal MLR 3.49(17) 1.77 (31) 0.19 (90) 3.62 1.84 0.19 3.49 1.89 0.23

Non-causal RF
All 2.81 (3978) 1.50 (3978) 0.16 (3978) 4.11 2.17 0.23 3.65 1.99 0.24

Lagged 2.04 (480) 1.12 (560) 0.14 (80) 3.78 1.95 0.22 3.41 1.85 0.23
Random 2.07 (870) 1.12 (770) 0.12 (970) 4.43 2.2 0.25 3.94 2.1 0.25

Non-causal MLR

All 1.21 (3978) 0.63 (3978) 0.07 (3978) 10.42 6.15 0.85 7.71 4.44 0.44
Lagged 2.90 (440) 1.54 (40) 0.17 (120) 3.74 2.07 0.22 3.11 1.70 0.21
Random 3.37 (420) 1.56 (130) 0.19 (290) 5.11 2.32 0.24 4.14 2.17 0.24

XAI 3.03 (240) 1.76 (420) 0.17 (140) 4.07 1.97 0.22 3.4 1.93 0.22
LSTM 3.90 (3978) 1.97 (3978) 0.34 (3978) 4.85 2.29 0.35 4.74 2.22 0.36

Table 3. MAE (lower values means better models)

Figure 7. Comparison of the performance of Training, Validation and Test sets of MLR models that
used different feature selection methods for predicting minimum MSLP.
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Figure 8. Same as Figure 7. but for predicting Total area integrated precipitation.
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Table 4. List of 31 causally linked predictors for Maximum wind (1 day lead-time) at significant time lags
with best model using 𝑃𝐶1


