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1. CMIP6 Model Outputs
The spaghetti plot below depicts all 17 CMIP6 simulations considered in this analysis.

Figure 1. De-seasoned output from all 17 CMIP6 simulation outputs. In the LOO analysis, these are
each individually treated as the observed time series in order to assess our modelling approach.
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2. All LOO Cases
Each of the 17 CMIP6 simulations were treated as the “observed” dataset in order to assess our method-
ology’s accuracy. The main paper depicted results for access-cm2, and identical analysis exists for the
remaining 16 simulations, detailed below.

Figure 2. Four separate analyses, where each simulation (black) had 2021-2100 held out and their
values predicted by our methodology (green).
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Figure 3. Model simulations (black) and their corresponding predicted values (green) when 2021-2100
was held out.
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Figure 4. Model simulations (black) and their corresponding predicted values (green) when 2021-2100
was held out.
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Figure 5. Model simulations (black) and their corresponding predicted values (green) when 2021-2100
was held out.
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3. Kernel Choice
The choice kernel is worth attention as it defines the class of functions over which we place our Gaus-
sian process prior. Since we have deseasoned our data, we may forgo explicitly encoding seasonality in
the kernel (as in, for example, [1] Section 5.4). We also wanted to avoid placing any strict shape restric-
tions e.g. linear or polynomial. Finally, the Matérn 5/2 kernel is a common alternative to the squared
exponential that we employed, but our experimentation did not find a meaningful difference between
the two (see Figure 6).
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Figure 6. The top panel recreates Figure 2 in the manuscript, where we predicted the observed global
mean surface air temperature through 2100. We did so using our methodology, which employed a
squared exponential kernel in its Gaussian process. The bottom panel depicts similar analysis with a
Matérn 5/2 kernel employed instead. These results, and similar for LOO analysis, did not discover a
compelling difference between the two kernels, and we opted for the simpler squared exponential.
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