
Appendices 

A. SAVAR details 

In this section we provide more details on the dynamical and statistical properties of SAVAR models. We 

start by showing the need of adding some constraint on how W  is defined as well as more details on 

the noise. Then we describe the model with a forcing term (used for the experiment with a non-

stationary trend). The next subsections describe SAVAR as a vector autoregressive process of order 1, 

which is the form used in the formal proofs of propositions 3.1 and 3.2 as well as in the last part of this 

appendix, where the autocovariance function of the SAVAR model is derived. 

 

A.1. Rescaling of weight term 

( )iW  defines the contribution of the -th grid point to the i -th mode. Scaling W  by a scalar   does 

not have any effect on the model, due to the inverse mapping of W  . Suppose that =W W , then 
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which is equivalent to equation (16). 

 

A.2. Noise term 

The SAVAR model’s grid level noise term takes the form = W D W D   y x y . To avoid 

overparametrization our definition requires some constraints on the weights W . While rescaling W  



does not have an effect at the grid-level dynamics, as shown above, it does effect the noise’s strength   

in the mode-level process. We, therefore, add some constraints to W. Let again =W W , then 
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Consequently, by constraining the values of W , for example 
2|| || =1iw , the only free 

parameter is  . 

 

A.3. SAVAR with a forcing term 

One can add a forcing term to the model yielding 
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where 
tb  denotes the influence of the forcing term in the -th point at time t . The matrix form is given 

by 
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For the non-stationarity experiment we used = ( , )t oW t b  as described in Section 4.1.1. 

 

A.4. SAVAR as a process of order 1 



SAVAR definitions from eqs. (16) and (17) can be rewritten into a process of order 1. To this end let 

max
L

t


y  be the vector obtained by concatenating ty , ..., 

max
t y  and max

N

t


x  the vector 

obtained by concatenating tx , ..., 
max

t x . In terms of these extended variables the processes read 
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where t  is obtained by concatenating t  with max( 1)L    zeros, t  by concatenating t  with 

max( 1)N    zeros, and 
yA  and xA  are the block matrices 
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A.5. Autocovariance function of SAVAR 

For simplicity we assume a stationary SAVAR process with mean zero. From equation (22) the covariance 

of ty  at lag 0 , denoted by (0) , is given by 
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By assuming stationarity we have that 
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Using the vectorization operator ( ( ) = ( ) ( ))vec ABC C A vec B  it is possible to express a 

close-term solution in terms of ( (0))vec   where   denotes the Kronecker product. Then, from Eq. 

(24), 
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where nI  is the identity matrix. 

The autocovariance of ty  at time lag  , denoted ( )  for = 0 , is 

 ( ) = (0).yA   (26) 

This can be shown by finding (1)  from multiplying ty  and 1ty  and taking the expectation. 
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Then (26) follows by induction. 

 

B. Proofs 



In this section we prove Propositions 3.1 and 3.2 stated in the main text. We start with a detailed 

discussion that further clarifies the connection between the processes at grid- and mode-level, see eqs. 

(16) and (17) respectively. 

Recall that N LW   maps from = L
 to im( ) = NW  , where  and  

respectively are the spaces in which the grid-level variables ty  and mode-level variables tx  take their 

values. As long as <N L , i.e., as long as there are fewer modes than grid points (which we assume 

throughout) the matrix W  necessarily has a nonzero kernel and can therefore not be inverted. We 

therefore work with its Moore-Penrose pseudo-inverse L NW   , that always exists and that maps 

from  to im( )W   . As stated below Eq. (16), the rows of W  are linearly independent by 

assumption. This implies = NWW  I  and rank ( ) = rank ( ) =W W N . Note that 
LW W  I . Further, 

= im( )W  and  decomposes as = im( ) ker ( )W W  . This can be made manifest by means of 

the matrices 

 
1 2= , = LP W W P W W I  

with the properties 1 2 = LP P I , 2

1 1=P P , 2

2 2=P P , and 1 2 2 1= = 0PP P P . These matrices respectively 

are projectors to the subspaces im( )W   and ker ( )W  that can be used to uniquely decompose any 

v  into 1 2=v v v  with 
1 1= im( )v vP W   and 2 2= ker ( )v vP W . 

Further, this decomposition of  is consistent with dynamics described by the grid-level 

process (16). That is to say, the process ty  be can accordingly decomposed as (1) (2)=t t ty y y  into two 

individual processes that do not mix over time. These are (1)

1= im( )t tP W y y  and 

(2)

2= ker( )t tP Wy y  with the dynamics 
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This follows from Eq. (16) by using 1 =WP W , 2 = 0WP , 
1 =PW W  , and 

2 = 0PW  . Note that (2)

ty  is a 

mere white noise process. 

The connection between the grid-level process ty  and the mode-level process tx  can now be 

understood in the following way: First, tx  has the same distribution as (1)=t tW Wy y . Second, W 

tx  has 

the same distribution as (1)

ty . The processes ty  and tx  are therefore in a one-to-one correspondence 

up to the additive independent white noise process (2)

ty  at grid-level. While this already gives strong 

intuitive indication in favour of the propositions, their formal proofs now follow. 

The proposition 3.1 states that a SAVAR process as in Eq. (16) is stable if and only if the 

corresponding VAR process (17) is stable. In particular, the choice of W  does not influence stability. 

Proof of Proposition 3.1: 

We begin by rewriting both processes into processes of order 1  as shown in Appendix A Section A.4. 

Stability of the SAVAR process in Eq. (16) (the VAR process in Eq. (17)) then means that all eigenvalues of 

yA  (of xA ) have modulus strictly smaller than one. The proposition can therefore be proven by showing 

that 
yA  and xA  have the same nonzero eigenvalues. 

One direction of this equivalence, namely that all nonzero eigenvalues of xA  are also nonzero 

eigenvalues of 
yA , follows readily: Let xv  be a nonzero eigenvector of xA  with eigenvalue 0  , i.e., 

= 0x x xA v v  . A calculation then shows 
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Here,   denotes the Kronecker product such that 
max
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  I  is a block diagonal matrix with max  

copies of W   on its diagonal. This identifies 
max

( ) xW v

  I  as eigenvector of 
yA  with eigenvalue  . 

The other direction of the equivalence, namely that all nonzero eigenvalues of 
yA  are also 

nonzero eigenvalues of xA , is more complicated. For this purpose we first split up 
yA  as 

(1) (2)=y y yA A A , where (1)

yA  and (2)

yA  respectively correspond to the processes (1)

ty  and (2)

ty  

introduced above. This can be achieved by extending the projection matrices 1P  and 2P  to the enlarged 

space max max=
L 

, namely 

 1 1 2 2
max max

= , = .P P P P  I I  

These are block diagonal matrices (with max  copies of, respectively, 1P  and 2P  on their diagonal) that 

still obey the projector properties 1 2
max

= LP P  I , 2

1 1=P P , 2

2 2=P P , and 
1 2 2 1= = 0PP P P . Then 

 1 2 1 2 1 1 2 2= ( ) ( ) = ,y y y yA P P A P P P A P P A P    

where 1 2 2 1= = 0y yP A P P A P  follows from 
1 2 2 1= = 0PP P P  together with 

2 2= = 0PW WP . This shows 

that the desired decomposition indeed exists with 
(1)

1 1=y yA P A P  and 
(2)

2 2=y yA P A P . By inspection 
(2)

yA  

is found to be lower triagonal with only zeros on its diagonal, hence all its eigenvalues are zero. 

Now let 
yv  be a nonzero eigenvector of 

yA  with eigenvalue 0  , i.e., = 0y y yA v v  . Using 

1 2=y y yv Pv P v , 
(1) (2)=y y yA A A , and left-multiplying = 0y y yA v v   with 

1P  and 
2P  we then find 
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This shows that )ia  1 = 0yPv  or )ib  1 yPv  is an eigenvector of (1)

yA  with eigenvalue   and )iia  

2 = 0yP v  or )iib  2 yP v  is an eigenvector of (2)

yA  with eigenvalue  . Since all eigenvalues of (2)

yA  are 

zero )iib  cannot hold and thus )iia  must be the true, i.e., 2 = 0yP v . But then 1 0yPv   so )ia  cannot 

hold and )ib  must be true, i.e., 1=y yv Pv  is an eigenvector of (1)

yA  with eigenvalue  . A calculation 

now shows 
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which identifies 
max

( ) yW vI  as eigenvector of xA  with eigenvalue  .  

Proposition 3.2 states that given 
yA  it is possible to identify xA  up to similarity. Similarly, given 

xA  it is possible to identify xA  up to similarity. 

Proof of Proposition 3.2: 

Given 
yA  we find ( ) ( )y W W     for all max1     unambiguously. Similarly, given xA  we find 

( ) ( )x      for all max1     unambiguously. It is therefore sufficient to show that given ( )y   it 

is possibile to identify ( )x   up to similarity, and that given ( )x   it is possibile to identify ( )y   up 

to similarity. 



Recall that = L  decomposes as = im( ) ker( )W W   and that 1P  projects to im( )W  . 

The equality 
1 1( ) = ( )y yP P    thus shows that ( )y   maps im( )W   to a subspace of itself while it 

maps ker ( )W  to zero. Now choose a basis 1, , Ne e  of im( )W   as well as a basis 1, , L Nf f   of 

ker( )W , and let GL( , )S L  be the matrix that changes the basis of  to the basis 

1 1, , , , ,N L Ne e f f  . Then 
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   and where 

,0n m
 denotes the n m -dimensional matrix with all zero entries. 
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with GL( , )W N . Note that W   is invertible because of rank( ) =W N . 

To show that ( )x   can be determined up to similarity from ( )y   we first observe 

 
1 1 1( ) = ( ) = ( ) = ( )( ) .x y y yW W WS S S SW W W              

This shows that ( )x   is similar to ( )y  , so we have to prove that ( )y   can be determined up to 

similarity from ( )y  . For this purpose let GL( , )T N  be such that 
1( )( )yT T     is in Jordan 

normal form and let T  be the block diagonal matrix ,= diag( , )L N L NT T  
 I . Then 
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 (27) 



is in Jordan normal form too. Now let GL( , )U L  be such that 1( )yU U   is in Jordan normal 

form with the individual Jordan blocks being ordered such that a block 1J  with eigenvalue 1  is before 

(i.e., to the upper left of) a block 2J  with eigenvalue 2  if any of the following three conditions holds: 

)i  1 2| |>| |  . )ii  1 2| |=| |   and 1 2= > 0  . )iii  1 2=   and 1J  is larger than 2J . These 

conditions determine 
( ) 1( ) ( )J

y yU U      uniquely, which is why 
( ) ( )J

y   can be found from 

( )y   by bringing the latter to Jordan normal from and then reordering the blocks appropriately. From 

Eq. (27) we further know that ( )y   has at least L N  one-dimensional Jordan blocks with eigenvalue 

0 . Hence, by definition of the imposed ordering of Jordan blocks, 
( ) ( )J

y   necessarily is of the block 

diagonal from 
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Now recall that any two Jordan normal forms of the same matrix can be obtained from each other by 

reordering the Jordan blocks, i.e., any two Jordan normal forms of the same matrix are similar. This 

means there is GL( , )V L  such that 

 
1 1 1 ( )( ) ( )( ) = ( ) ( )( ) = ( ) .J

y y yVTS VTS V TS TS V        

Due to the block diagonal form of both 
( ) ( )J

y   and 
1( ) ( )( )yTS TS  , the matrix V  too can be 

chosen to be block diagonal, namely = diag( , )L NV V 
 I . The previous equation then implies 

 
1 ( )( )( ) = ( ) .J

y yV T V T         



This shows that ( ) ( )J

y    is similar to ( )y   and hence also similar to ( )x  . Since ( ) ( )J

y    can be 

determined uniquely from ( )y   as explained above, ( )x   can be determined from ( )y   up to 

similarity. 

The opposite direction of the proposition now follows readily. A calculation gives 
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This shows that ( )y   is similar to 
,( ( ),0 )x L N L Ndiag    , which is known uniquely once ( )x   is 

known.  

 

C. Algorithms 

C.1. Mapped-PCMCI 

Algorithm 1 describes an implementation of Mapped-PCMCI using a modified version of Varimax (12) 

and multivariate linear regression, MLR (9). Note that since all entries of Ŵ  are nonzero, when using it 

to map ̂  to the grid space, many grid points will be connected to each other. To address this problem, 

we suggest a slight modification of the Varimax algorithm (Varimax+) that determines whether each 

loading’s value statistically differs from 0 (see algorithm 3). 



For a more detailed explanation of the method see Section 2.3. 

Algorithm 1 Mapped-PCMCI 

1: procedure ( ,
ˆˆ( , )Y h YY   ) 

2:  ˆ =W Varimax ( )Y  

3:  ˆ ˆ=X WY  

4:  ˆ ˆ( , )  PCMCI ( )X  

5:  ̂  MLR ˆˆ( , )X  

6:  ˆ ˆ=Y W W   

7:  ˆ ˆ
Y Y  

8:  return: ˆ ˆ( , )Y Y  

 

C.2. Matching permutation 

Algorithm 2 offers an approach for the problem given by the fact that the rows of Ŵ  can be permuted 

in relation to .W  Therefore we need to look for a permutation to find a suitable order that allows us to 

compare W  and Ŵ . Here we reorder the rows of Ŵ  to increase the Pearson correlation coefficient 

between the rows of W  and Ŵ . This algorithm outputs one of the many solutions to the problem. Let 

 be the true order of the weights, = (1, , )I , the algorithm reads 



 

Algorithm 2 Finding a matching permutation 

1: procedure ( ˆ, ,W W ) ˆ  

2:  ˆ = ()  

3:  = {} 

4:  for i  do 

5:   
* ˆ= argmax | ( , ) |i j

jj  w w  

6:   *ˆ =i j  

7:   *= { }j  

8:  return: ˆ  

 

C.3. Varimax
+
 

The Varimax rotation is an algorithm that rotates loadings resulting from PCA to simplify its 

interpretation. It maximizes the sum of the variances of the squared loadings. As a result most of the 

values of those loadings are pushed towards zero. More information of PCA and Varimax can be found 

in Sec. 2.2.1. Varimax+ aims to assess which values of the resulting loadings are statistically different 

from 0 and which are not. 



Starting from the original dataset (Y), n_rep  datasets of n_sam  samples (
iY ) are generated 

using random sampling with replacement ( Bootstrap ). The Varimax algorithm is applied to each of 

those sets, and then the resulting loadings iW  are ordered to match the order of the estimated loadings 

of Y , Ŵ . This reordering is done with Algorithm 2 ( Find_Permutation ). Finally, for each variable (grid-

point)   in each of the {1, , }k N  permuted Varimax loading distributions, we test whether the 

value 0  lies inside that permuted distribution at a given alpha level  . If that hypothesis cannot be 

rejected, then that grid point in the estimated weights ( ˆ
kW ) for that Varimax component is set to 0 . 

 

Algorithm 3 Varimax+ 

1: procedure ( ˆ,n_rep,n_samY W ) 

2:  = {}     Set of estimated W  from bootstrap data 

3:  ˆ Varimax( )W Y  

4:  while n_repi   do 

5:   Bootstrap( ,n_sam)iY Y  

6:   Varimax( )i iW Y  

7:   
per

ˆFind_Permutation( , )i iW W W  

8:   
per

iW   



9:   = 1i i   

10:  for   and {1, , }k N  do  for every grid location among all estimated 

per
W  

11:   p_val p value of 0 wrt. k k   

12:   if p_val >k   then 

13:    ˆ = 0kW  

14:  return: Ŵ  

 

 


