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A. Spot diffusion model
The fluorescence intensity f is assumed is proportional (with factor B) to a convolution (denoted ∗) of the
microscopic number density (or concentration) C and the instrumental point spread function h:

f (x, t) = B (h ∗ C) (x, t), (1)

where B = ρεQ, ρ is the efficiency of the instrument to collect photons, ε is the molecular absorption coefficient,
and Q is the quantum yield of the fluorophore. We consider the PSF is approximated with a 2D Gaussian function
with an isotropic bandwidth σPSF in the lateral direction. Without loss of generality, we assume below that spot
diffusion starts at the spatial position x0 = (x, y) = (0,0). Then, we have:

(h ∗ C)(x, y, t) =
∫ +∞
−∞

∫ +∞
−∞

C(r, s, t) h(x − r, y − s) dr ds
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1
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Then, we have
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Denote R = br − ax and S = bs − ay. Then, dR
dr = b and dS

ds = b. It follows that
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The fluorescence intensity is then of the following form:

f (x, y, t) = B ×
C0

2π
(
2(t − t0)D + σ2

PSF

) × exp

(
−

x2 + y2

4(t − t0)D + 2σ2
PSF

)
.

Finally, the expression of intensity at spatial position x given an initial spot position located at x0 is given by :

f (x, t) =
A0

2D(t − t0) + σ2
PSF

exp

(
−

‖x − x0‖
2
2
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)
,

with A0 = C0B/2π.
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B. Calculation of the autocorrelation G1 in the case of uniform background
Let f (x, t) be the fluorescent intensity at point x and time t with x ∈ Ω, Ω ⊂ R2 and t ∈ R+. We denote f (t) the
t-th image in the sequence. The intensity at spatial position x of diffusing spot initially located at x0 and starting
diffusion time t = t0 is as follows:

f (x, t) =
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2D(t − t0) + σ2
PSF

exp
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, (2)

Let us consider the following autocorrelation function:
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〈 f 〉2t
,

where τ is the time lag and 〈 · 〉 denotes the spatial mean. The autocorrelation G1 can be expressed in the case
of diffusing spot as follows given (2) and t0 = 0 (without loss of generality):
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As the integral of the exponential on the domain Ω is approximately equal to the integral on R2 when x is far from
x0, which results in a Gauss integral. Finally, we have:

G1(t, τ) ≈ |Ω|
σ2(t)

σ2(t + τ)
2π σ2(t)σ2(t + τ)
σ2(t) + σ2(t + τ)

1[
2π σ2(t)

]2 ≈
|Ω|

2π
(
σ2(t) + σ2(t + τ)

)
≈

|Ω|

4π
(
Dτ + 2Dt + σ2

PSF

)
It turns out that the autocorrelation function depends on both the time lag τ and time t unlike the usual equations
of TICS which assume temporal stationarity of the diffusing process.
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C. Calculation of the autocorrelation G2 in the case of non-uniform background
In the case of non-uniform background, the assumption that the value of the mean fluorescent intensity is zero
after a long enough time does not hold. In order to compute the autocorrelation function G2, the mean value of the
fluorescent intensity has to be taken into account as follows:

G2(t, τ) =
〈

(
f (x, t) − f̄

) (
f (x, t + τ) − f̄

)
〉

〈 f 〉2t

where f̄ = 1
T−t

∫ T

t
f (x, θ) dθ. The explicit formulation of G2(τ) is then derived as follows:

G2(t, τ) =
〈 f (x, t) f (x, t + τ) 〉

〈 f 〉2t
−
〈 f (x, t + τ) f̄ 〉

〈 f 〉2t
−
〈 f (x, t) f̄ 〉

〈 f 〉2t
+
〈 f̄ 2

t 〉

〈 f 〉2t
. (3)

We calculate separately all the terms involved in (3). The first term is the expression of G1 (see Appendix B):

〈 f (x, t) f (x, t + τ) 〉

〈 f 〉2t
= G1(t, τ) ≈

|Ω|

4π
(
Dτ + 2Dt + σ2

PSF

) (4)

The second term is of the following form:

〈 f (x, t + τ) f̄ 〉 =

〈
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exp

(
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)
1

T − t
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〉

=
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1
|Ω|

∫
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exp

(
−
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2
2
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) ∫ T
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=
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σ2(t + τ)(T − t)|Ω|
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∫ T
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exp

(
−
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2
2
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)
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exp

(
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where σ2(t) = 2Dt +σ2
PSF. By inverting the two integrals, using the Gauss integral (see Appendix A), as well as by

applying changes of variables (e.g., x = D(θ + t + σ) + σ2
PSF, dx = Ddθ), one obtains

〈 f (x, t + τ) f̄ 〉 =
πA2

0
D|Ω|(T − t)

log
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In the same manner, one obtains
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)
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The calculation of 〈 f̄ 2 〉 is as follows:
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1
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〉

=
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where σ2(θ) = 2Dθ + σ2
PSF. By inverting the integrals, using the Gauss integral, as well as by applying a triple

change of variables: x = D(θ1 + θ2) + σ
2
PSF, dx = Ddθ1, then y = D(t + θ2) + σ

2
PSF, dy = Ddθ2 and then

z = y + D(T − t), dz = dy) one obtains

〈 f̄ f̄ 〉 =
πA2

0
D2 |Ω|(T − t)2

[ (
2DT + σ2

PSF

)
log

(
2DT + σ2
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)
+

(
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)
log

(
2Dt + σ2
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PSF

) ]
. (7)

The last term to calculate is

〈 f 〉2t =

〈
A0

2Dt + σ2
PSF

exp

(
−
‖x − x0‖

2
2

4Dt + 2σ2
PSF
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=

[ ∫
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A0
2Dt + σ2

PSF

exp

(
−
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2
2

4Dt + 2σ2
PSF

)
dx

]2

=

[ ∫
x∈Ω

A0
σ2(t)

exp

(
−
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2
2

2σ2(t)

)
dx

]2

As before, the integral of the exponential is the Gauss integral, which yields

〈 f 〉2t =
4π2 A2

0
|Ω|2

. (8)

Finally, the autocorrelation model G2 obtained by substituting the terms (4)-(8) into (3):

G2(t, τ) = G1(τ) −

πA2
0

D |Ω |(T−t)
log

(
D(t+T+τ)+σ2

PSF

D(2t+τ)+σ2
PSF

)
4π2A2

0
|Ω |2

−

πA2
0

D |Ω |(T−t)
log

(
D(t+T )+σ2

PSF

2Dt+σ2
PSF

)
4π2A2

0
|Ω |2

+

πA2
0

D2 |Ω |(T−t)2

[(
2DT + σ2

PSF

)
log

(
2DT+σ2

PSF

D(T+t)+σ2
PSF

)
+

(
2Dt + σ2

PSF

)
log

(
2Dt+σ2

PSF

D(T+t)+σ2
PSF

)]
4π2A2

0
|Ω |2

After all simplifications, one gets

G2(t, τ) = G1(t, τ) + |Ω|

[
1

4πD(T − t)
log

(
Dτ + 2Dt + σ2

PSF

Dτ + D(T + t) + σ2
PSF

)
+

2DT + σ2
PSF

4πD2(T − t)2
log
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)
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(
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.

If we denote

K1(t, τ) =
1

4πD(T − t)
log

(
Dτ + 2Dt + σ2

PSF

Dτ + D(T + t) + σ2
PSF

)
,

K2(τ) =
2DT + σ2

PSF

4πD2(T − t)2
log

(
2DT + σ2

PSF

D(T + t) + σ2
PSF

)
+
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PSF

4πD2(T − t)2
log

(
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PSF

D(T + t) + σ2
PSF

)
,

it follows that
G2(t, τ) = G1(t, τ) + |Ω| [K1(t, τ) + K2(t)] .
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D. Influence of the ROI size and spot position in the ROI
In this section, we apply the BayesTICS algorithm on artificial image sequences to compute the MAP and MMSE
estimators of the diffusion coefficient given model G2 (9). Three scenarios were tested: varying ROI size, varying
spot position in the ROI, and combined varying ROI size and spot position. We simulated a sequence of 256× 256
pixels noise-free images depicting multiple diffusing spots, with a diffusion coefficient equal to 0.25 pixels/frame
(see Supplementary Fig. 1a). The spots appear at random locations and at different times. Several test sequences
corresponding to the three given scenarios were extracted from this main sequence. For each scenario, we describe
the test sequences, then discuss the estimation results in terms of fitting as well as in terms of MAP and MMSE
estimation of the diffusion coefficient.

D.0.1. Influence of the ROI size
In this scenario, six test sequences corresponding to six different ROIs were used. Each sequence is composed of
250 frames. As an illustration, four typical images are shown in Supplementary Fig. 1b at times t = 0,15,20 and
25. The spot of interest is assumed to be located at the center of the ROI. Time t = t0 corresponds to the frame where
this spot appears at the cell surface. The two secondary diffusing spots appear at t0 + 15 and t0 + 20, respectively.
The largest ROI covers the spot of interest and the two other spots diffusing in the neighborhood (Supplementary
Fig. 1c), while the smallest ROI only contains the spot of interest (Supplementary Fig. 1h).

We computed the MAP and MMSE estimators of the diffusion coefficient by increasing the ROI sizes as illus-
trated in Supplementary Fig. 1c-h. The autocorrelation fits very well for all ROI sizes, even though it appears to
be even more precise for the smallest sizes. As for the MAP and MMSE estimators, they barely differ between
sequences, with a similar influence of the ROI size on the accuracy of the estimation. For the three largest ROIs
(Supplementary Fig. 1c-d-e), both MAP and MMSE slightly underestimate the diffusion coefficient, with D̂MAP

being in the range [0.22,0.23] and D̂MMMSE in the range [0.23,0.24] for a ground truth Dtrue = 0.25. For the
fourth ROI (Supplementary Fig. 1f), the MAP and MMSE estimators are almost perfect with D̂MAP = 0.24 and
D̂MMMSE = 0.25. For the two smallest ROIs (Supplementary Fig. 1g-h), both MAP and MMSE slightly overesti-
mate the diffusion coefficient, with D̂MAP = 0.26 and D̂MMMSE = 0.27 in both cases. In conclusion, the ROI size has
almost no influence on the estimation of the diffusion coefficient. It still appears that the MAP estimator performs
best for small ROI sizes, while the MMSE estimator performs best for medium ROI sizes. In the case of clouded
ROIs, the MMSE estimator appears more accurate than the MAP estimator.

D.0.2. Influence of the spot position in the ROI
From the simulated main sequence, six different ROIs of the same size were chosen around the same spot of
interest (see Supplementary Fig. 2). Each ROI may contain either the full spot or only a part of it (Supplementary
Fig. 2c), and another diffusing spot may be present in the ROI (Supplementary Fig. 2d and 2f). As in the previous
case, each sequence is composed of 250 frames.

We applied the BayesTICS algorithm and computed the MAP and MMSE estimators in each case. The autocor-
relation fitting is essentially the same for the six test sequences, and is consistent with the scenario of a medium to
large size ROI seen previously. The diffusion coefficient is slightly underestimated for both MAP and MMSE, as
expected from the first scenario: D̂MAP is in the range [0.21,0.23] and D̂MMMSE is in the range [0.22,0.23] for a ground
truth Dtrue = 0.25. In particular, the MMSE estimator is very consistent between all cases, with D̂MMMSE = 0.23 in
five out of the six cases. The presence of another spot diffusing in the ROI (Supplementary Fig. 2f) seems to
amplify the underestimation of the diffusion coefficient: in this case, D̂MAP = 0.21 and D̂MMMSE = 0.22, with D̂MMMSE

being slightly more accurate than D̂MAP. The results still clearly show that both the MAP and MMSE estimators are
robust to spot position.

D.0.3. Combined influence of the ROI size and spot position
Finally, it is important to evaluate the sensitivity of the MAP and MMSE estimators for both varying ROI size and
varying spot location in the ROI. To address this, we extracted, from the simulated main sequence, the four test
sequences illustrated in Supplementary Fig. 3. Various ROI sizes and ratios are considered. The spot of interest is
placed in different locations, and several other spots, appearing after the spot of interest, are diffusing in the ROI.
As before, each sequence is composed of 250 frames. Both the autocorrelation plots of these sequences, and the
MAP and MMSE estimators computed with the BayesTICS method, are shown in Supplementary Fig. 3.

The autocorrelation fitting is consistent with what was observed in the previous scenarios. The estimation
results are homogeneous for the last three cases, where D̂MAP is in the range [0.20,0.21] and D̂MMMSE is in the range
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a

6 = 0
6 =16

6 = 20
6 = 26
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b

d

e

f

g

h

!"#$ = 0.23
!"")* = 0.24

!"#$ = 0.22
!"")* = 0.23

!"#$ = 0.22
!"")* = 0.24

!"#$ = 0.24
!"")* = 0.25

!"#$ = 0.26
!"")* = 0.27

!"#$ = 0.26
!"")* = 0.27
ˆ
ˆ

ˆ
ˆ

ˆ
ˆ

ˆ
ˆ

ˆ
ˆ

ˆ
ˆ

D./ = 0.25Theoretical diffusion coefficient 

Supplementary Fig. 1. Robustness of BayesTICS to window size (with centered spot). a. Simulated noise-free
image sequence (256 × 256 pixels, 300 frames) of 2D diffusing spots with a theoretical diffusion coefficient of
Dtrue = 0.25 pixels/frame. The displayed image is the maximum intensity projection of the 3D stack. The ROIs

used for estimating the diffusion coefficient are shown in red, and the spot of interest in purple. b. Four images of
the sequence are shown at time t = 0,15,20 and 25. The ROI and the spot of interest are also highlighted red
(square) and purple (circle), respectively. c-h. Six ROI sizes were tested : 73 × 57, 54 × 43, 31 × 28, 21 × 19,
12 × 11, and 8 × 7 pixels windows. The ROI is centered on the spot of interest. Each plot shows the computed
autocorrelation from the data (dark gray) and the generated autocorrelations corresponding to the estimated

distribution of the diffusion coefficient from the BayesTICS method (green). The two estimates D̂MAP and D̂MMMSE

are given for each window size on their respective plots.

[0.21,0.22]. The only result that seems significantly different is the one shown in Supplementary Fig. 3b, where
D̂MAP = 0.17 and D̂MMMSE = 0.19. In this case, the fact that the ROI is clouded yields a significant underestimation
of the diffusion coefficient for both MAP and MMSE estimators. From these results, we can conclude that the
MAP and MMSE estimators are robust to the cumulative effect of the ROI size and spot position; however, caution
is needed when handling large ROI sizes with a large number of other diffusing spots in the ROI.
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Supplementary Fig. 2. Robustness of BayesTICS to spot position (with fixed window size). a-f. Six different
cases were tested. Each ROI was extracted from a simulated image sequence (256 × 256 pixels, 300 frames) of 2D

diffusing spots with a theoretical diffusion coefficient of Dtrue = 0.25 pixels/frame. For each ROI, we display the
maximum intensity projection of the 3D stack and the plots of the autocorrelation versus time lag. The diffusing
spot of interest is labeled in purple (circle). The spot can be located anywhere in the ROI. The ROI can contain
supplementary spots diffusing potentially at the same time or not. The size of the ROI is fixed to 37 × 37 pixels.
Each plot shows the computed autocorrelation from the data (dark gray) and the generated autocorrelations

corresponding to the estimated distribution of the diffusion coefficient from the BayesTICS method (green). The
two estimates D̂MAP and D̂MMMSE are given on the corresponding plots.
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Supplementary Fig. 3. Robustness of BayesTICS to spot position with variable window size. a. Maximum
intensity projection of the 3D stack for the main simulated sequence (256 × 256 pixels, 300 frames) of 2D

diffusing spots with a theoretical diffusion coefficient of Dtrue = 0.25 pixels/frame. b-e. Four different cases were
tested, extracted from the main simulated sequence. For each ROI, we display the maximum intensity projection of
the 3D stack and the plots of the autocorrelation versus time lag. The ROIs are shown in red (rectangle) and the

spot of interest in purple (circle). The window size varies, from up to buttom and to the left, as following: 81 × 72,
49 × 51, 63 × 39, and 44 × 31 pixels. The spot of interest can be located anywhere in the ROI. The ROI can

contain supplementary spots diffusing potentially at the same time or not. Each plot shows the computed
autocorrelation from the data (dark gray) and the generated autocorrelations corresponding to the estimated

distribution of the diffusion coefficient from the BayesTICS method (green). The two estimates D̂MAP and D̂MMMSE

are given on the corresponding plots.
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E. BayesTICS applied to Rab11 proteins
In this section, we applied BayesTICS to TIRFM images depicting Rab11 proteins during the late stages of exocy-
tosis. These experiments were performed in the context of a double labeling, Rab11-mCherry/Tfr-pHluorin. The
videos of TfR and Rab11 proteins were jointly captured with a dual TIRF microscopy set-up. In this biological
study, the primary idea is to characterize the phenomenon of vesicle fusion with the PM, diffusion of TfR at the
PM, and dissociation of Rab11 after vesicle fusion with PM. Rab11 proteins are known to either dissociate in the
cytosol after vesicle fusion or diffuse at the PM.1

A spot detection algorithm (see [4]) was applied to the TIRFM image sequence, which provided 378 spots
potentially diffusing at the PM. The time-point t0 of the beginning of fusion was estimated on the TfR spot. The
burst effect in the fluorescent signal on this spot allows for the accurate estimation of t0. Supplementary Fig. 4a
illustrates two TfR and Rab11 spots having the same spatial and temporal coordinates. We then applied BayesTICS
to all the detected spots. Finally, as BayesTICS is dedicated to diffusion estimation, we tested beforehand if the
estimated posterior distribution for each spot corresponds to pure diffusion. The test was conducted as follows :
first, we estimated the two parameters of a Gamma distribution that best fitted the posterior distribution provided
by BayesTICS ; then, a Kolmogorov-Smirnov test was used to test the null hypothesis (with a 5% significance
level) that the BayesTICS posterior distribution follows a Gamma distribution. With this procedure, we found that,
between 2% and 11% of the Rab11 detected spots (depending on the chosen parameter D or σPSF and model G1
or G2) display apparent diffusion. Supplementary Fig. 4b illustrates the results for three Rab11 spots depicting
apparent diffusion.

1Gidon, A et al. (2012). A Rab11A/myosin Vb/Rab11-FIP2 complex frames two late recycling steps of langerin from the ERC
to the plasma membrane. Traffic, 13(6):815-833.
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Supplementary Fig. 4. BayesTICS applied to Rab11 spots. a. Illustration of five frames of a TfR spot (upper
line), a Rab11 spot (lower line) displaying apparent diffusion and detected at the same spatial and temporal

position. b. Illustration of the first frame for Rab11 spots. c. The autocorrelation versus time lag plot are shown for
G1 and G2 models. Each plot shows the observed autocorrelation (black curve), and two autocorrelation samples
generated from the G1 and G2 models with the D̂MAP and D̂MMMSE parameters (green and magenta curves). d. The
estimated posterior distributions are displayed for D (left) and σPSF (right) for the third example of a Rab11 spot.
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