SUPPLEMENTARY INFORMATION

Vahid Nourian ${ }^{1 *}$ and Henry Shum ${ }^{1}$
${ }^{1}$ Department of Applied Mathematics, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
*Corresponding author. E-mail: Vnourian@uwaterloo.ca

S1. Define the functions used in the boundary integral equations

$$
\begin{align*}
& J_{1}=\frac{2 \epsilon^{2}+\|\vec{x}-\vec{\gamma}\|^{2}}{8 \pi \mu\left(\|\vec{x}-\vec{\gamma}\|^{2}+\epsilon^{2}\right)^{3 / 2}}, \tag{1}\\
& J_{2}=\frac{1}{8 \pi \mu\left(\|\vec{x}-\vec{\gamma}\|^{2}+\epsilon^{2}\right)^{3 / 2}}, \tag{2}\\
& J_{3}=\frac{1}{8 \pi \mu\|\vec{x}-\vec{\Psi}\|}, \tag{3}\\
& J_{4}=\frac{1}{8 \pi \mu\|\vec{x}-\vec{\Psi}\|^{3}}, \tag{4}\\
& P_{1}=\frac{5 \epsilon^{2}+2\|\vec{x}-\vec{\gamma}\|^{2}}{8 \pi \mu\left(\|\vec{x}-\vec{\gamma}\|^{2}+\epsilon^{2}\right)^{5 / 2}} \tag{5}\\
& P_{2}=\frac{1}{4 \pi \mu\|\vec{x}-\vec{\Psi}\|^{3}}, \tag{6}\\
& K_{1}=\frac{10 \epsilon^{4}-7 \epsilon^{2}\|\vec{x}-\vec{\gamma}\|^{2}-2\|\vec{x}-\vec{\gamma}\|^{4}}{8 \pi \mu\left(\|\vec{x}-\vec{\gamma}\|^{2}+\epsilon^{2}\right)^{7 / 2}}, \tag{7}\\
& K_{2}=\frac{21 \epsilon^{2}+6\|\vec{x}-\vec{\gamma}\|^{2}}{8 \pi \mu\left(\|\vec{x}-\vec{\gamma}\|^{2}+\epsilon^{2}\right)^{7 / 2}} . \tag{8}
\end{align*}
$$

S2. Iterative method to find rotor orientation

Each of the bacterial motors has a rotor, which rotates about the axis of the motor (also referred to as the rotor axis). To simplify notation in this section, we explain our model for a single flagellum and drop indices for distinguishing between the two flagella. The motor, which is embedded in the cell membrane of the bacterium, is assumed to be fixed in position and orientation with respect to the cell body. We define the orientation vectors of the flagellum $\vec{e}_{1}, \vec{e}_{2}, \vec{e}_{3}$, to be those of the rotor. The rotor axis is \vec{e}_{1}, which is fixed in the cell body frame, defined by the angles α and β. The transverse direction vectors \vec{e}_{2} and \vec{e}_{3} rotate about the rotor axis with a variable rotational speed $W^{r o t}$ that we calculate iteratively at each time step to be consistent with the prescribed motor torque.

The rotational motion of the rotor is transmitted to the filament via the bacterial hook segment. In our model, the rotor, hook, and filament are described by a single Kirchhoff rod discretized into segments of equal lengths. The zeroth segment of the rod represents the rotor, while the other segments constitute the hook and filament (we do not distinguish between hook and filament segments in this study). For the Kirchhoff rod description, we adopt the common convention that the third director, \vec{D}_{3}, is the tangential

Figure S 1. Flowchart of the iterative method to find the rotor orientation, the motor speed and the internal moment at the joint connects the flagellum to the rotor. The rotor and the corresponding triad are marked by red color and the first segment of flagellum is represented by dashed line.
direction along the curve. Thus, we define the relationships for the rotor segment

$$
\begin{equation*}
\vec{D}_{3}^{0}=\vec{e}_{1}, \quad \vec{D}_{1}^{0}=\vec{e}_{2}, \quad \vec{D}_{2}^{0}=\vec{e}_{3} \tag{9}
\end{equation*}
$$

At any given time, we assume that all positions and orientations of the segments are known. The angular velocities $\vec{\omega}_{s}^{n}, n=1,2, \ldots, N_{\mathrm{ff}}$, are determined by solving the system of linear equations described in the main text. The orientations of segments $n=1,2, \ldots, N_{\text {fl }}$ are determined at the next time step using an explicit time integration rule. The orientation of the rotor, however, is not updated in this manner because explicit time-stepping would generally not satisfy the motor torque constraint,

$$
\begin{equation*}
\vec{N}^{\frac{1}{2}} \cdot \vec{e}_{1}=T \tag{10}
\end{equation*}
$$

where the torque transmitted from the rotor to the filament $\vec{N}^{\frac{1}{2}}$ depends on the directors at the zeroth and first segments of the rod according to the Kirchhoff rod model [equation (14) of the main text with $n=0]$. Note that this motor torque condition prescribes only the component of torque in the axial direction. The other two components of torque are due to bending.

In our methodology, we use an iterative method to adjust \vec{e}_{2} and \vec{e}_{3} at each time step so that equation (10) is satisfied. We start with an initial trial value of the rotor angular velocity $W^{\text {rot }}$ equal to its value at the previous time step. We next update \vec{e}_{2} and \vec{e}_{3} based on their values at the previous time step and the estimate for $W^{\text {rot }}$. Then, the projection of $\vec{N}^{\frac{1}{2}}$ onto \vec{e}_{1} is compared with the target value of T. According to the obtained error, $W^{\text {rot }}$ is adjusted and the iteration continues so that a desirable error for the motor torque constraint is achieved. The steps of this iterative method are presented schematically in figure $S 1$.

Figure S 2. Comparison of the obtained results for swimming speed of a uni-flagellated bacterium with Higdon's. $U_{\text {swim }} / U_{w}$ is the progressive speed non-dimensionalized by the linear wavespeed of the flagellum. R and l are the cell body radius and the flagellum length, respectively. N_{λ} represents the flagellum wavenumber.

S3. Validation

We begin with a comparison of numerical results from our method with those obtained by Higdon [1979] to validate our boundary element method. In this test, we calculate the swimming speed of a model bacterium with a single rigid flagellum and a spherical cell body. The flagellum is divided into 30 and 60 segments for the shorter $(l / R=5)$ and longer $(l / R=10)$ flagellum, respectively, and we choose the other parameters according to the Higdon's model. As shown in figure S2, the swimming speeds of the model bacterium for two different flagellum lengths are in good agreement with the published results. To validate the elastic model, the equilibrium shape of a flexible filament settles in a viscous fluid is compared with an analytical solution derived by Xu and Nadim [1994] for the case of small deformation amplitudes. In particular, if it is assumed that a flexible filament with non-dimensional length 2 and a large bending modulus (3 in our test) settles horizontally under a uniform force, by applying the force correction factor the maximum non-dimensional deflection becomes about 0.07 and so the given solution is valid. If the filament is discretized into $n=30$ segments, the relative l^{2}-norm of the deviation of the numerical displacements $y^{\text {num }}$ from the analytical solution $y^{\text {an }}$ evaluated at corresponding discrete points is $E_{l^{2}}=\sqrt{\sum_{j=1}^{n}\left|y_{j}^{\text {an }}-y_{j}^{\text {num }}\right|^{2} / \sum_{j=1}^{n}\left|y_{j}^{\mathrm{an}}\right|^{2}} \approx 0.022$. Since the deflection of the filament is small, the drag coefficient of the flexible filament should be comparable with a rigid straight rod in a viscous fluid $\left(C_{N}=4 \pi \mu l /(\ln (2 l / d)-0.5)\right.$ (Cox [1970])). The minimum difference between the drag coefficients achieved in higher stiffnesses is about 3.8%. Such a difference is reasonable because our filament has finite length and a relatively large thickness whereas the mentioned formula is accurate only for very long and thin filaments. In the last step of the validation, it is verified that the swimming speed of a uni-flagellated bacterium with flexible flagellum converges to the rigid model as the stiffness of the flagellum increases. In particular if we consider Higdon's model bacterium with $N_{\lambda}=1$ and $l / R=5$, the swimming speeds of the model bacterium with flagellum stiffnesses $k_{f}=3$, $k_{f}=10$ and $k_{f}=15$ are respectively $93.6 \%, 97.4 \%$ and 98.7% of the rigid model speed. It is worth mentioning that the swimming speeds of this model bacterium with a flexible flagellum are always lower than that with a rigid flagellum.

Figure S 4. Trajectories of the model bacteria with two asymmetric pusher flagella

Table S 1. Parameters defining the shape of the model bacterium and simulation settings.

Description	Symbol	Dimensionless Value	Dimensional Value		
Radius of cell body	R	1	$0.65 \mu \mathrm{~m}$		
Flagella diameter	d	0.1	65 nm		
Each filament total length	l	5	$3.25 \mu \mathrm{~m}$		
Flagella rest/initial pitch	p	2	$1.3 \mu \mathrm{~m}$		
Flagella rest/initial amplitude	a	0.2	$0.13 \mu \mathrm{~m}$		
Amplitude growth factor	k_{E}	2	$4.73 \mu \mathrm{~m}^{-1}$		
Flagella relative stiffness (Flexural rigidity)	$k_{f}(E I)$	1	$\left(7.8 \mathrm{pN} \mu \mathrm{m}^{2}\right)$		
Number of segments on each flagellum	$N_{\text {fl }}$	30	30		
Number of triangular elements on the cell body	$N_{\text {head }}$	112	112		
Pusher flagellum motor torque in $e_{l}^{(1)}$ direction	T_{1}	-1	$-12 \mathrm{pN} \mu \mathrm{m}$		
Puller flagellum motor torque in $e_{1}^{(2)}$ direction	T_{2}	1	$12 \mathrm{pN} \mu \mathrm{m}$		
Flagella rest/initial orientation (rotor orientation)	β	45°	45°		
with respect to $\vec{e}_{1}^{(B)}$		45°	45°		
Motor position with respect to $\vec{e}_{1}^{(B)}$	α	1000	0.023 s		
Total swimming time	T_{s}				

E1-6 Vahid Nourian and Henry Shum

Figure S 5. The swimming trajectory of the model bacterium projected on $X Y$ and $X Z$ planes as function of the flagella orientations (β) (See Movie 4).

Figure S 6. The swimming trajectory of the model bacterium projected on $X Y$ and $X Z$ planes by changing the flagella places on the cell body (α)(See Movie 5).

Figure S 7. The swimming trajectory of the model bacterium projected on $X Y$ and $X Z$ planes as function of motor torque ratio $R_{T}=\left|T_{1}\right| /\left|T_{2}\right|$ (See Movie 6).

References

Jonathan JL Higdon. The hydrodynamics of flagellar propulsion: helical waves. Journal of Fluid Mechanics, 94(2):331-351, 1979.
Xianghua Xu and Ali Nadim. Deformation and orientation of an elastic slender body sedimenting in a viscous liquid. Physics of Fluids, 6(9):2889-2893, 1994.
RG Cox. The motion of long slender bodies in a viscous fluid part 1. general theory. Journal of Fluid mechanics, 44(4):791-810, 1970.

