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S1. Define the functions used in the boundary integral equations

𝐽1 =
2𝜖2 + ∥®𝑥 − ®𝛾∥2

8𝜋`(∥®𝑥 − ®𝛾∥2 + 𝜖2)3/2
, (1)

𝐽2 =
1

8𝜋`(∥®𝑥 − ®𝛾∥2 + 𝜖2)3/2
, (2)

𝐽3 =
1

8𝜋`∥®𝑥 − ®Ψ∥
, (3)

𝐽4 =
1

8𝜋`∥®𝑥 − ®Ψ∥3 , (4)

𝑃1 =
5𝜖2 + 2∥®𝑥 − ®𝛾∥2

8𝜋`(∥®𝑥 − ®𝛾∥2 + 𝜖2)5/2
(5)

𝑃2 =
1

4𝜋`∥®𝑥 − ®Ψ∥3 , (6)

𝐾1 =
10𝜖4 − 7𝜖2∥®𝑥 − ®𝛾∥2 − 2∥®𝑥 − ®𝛾∥4

8𝜋`(∥®𝑥 − ®𝛾∥2 + 𝜖2)7/2
, (7)

𝐾2 =
21𝜖2 + 6∥®𝑥 − ®𝛾∥2

8𝜋`(∥®𝑥 − ®𝛾∥2 + 𝜖2)7/2
. (8)

S2. Iterative method to find rotor orientation

Each of the bacterial motors has a rotor, which rotates about the axis of the motor (also referred to as the
rotor axis). To simplify notation in this section, we explain our model for a single flagellum and drop
indices for distinguishing between the two flagella. The motor, which is embedded in the cell membrane
of the bacterium, is assumed to be fixed in position and orientation with respect to the cell body. We
define the orientation vectors of the flagellum ®𝑒1, ®𝑒2, ®𝑒3, to be those of the rotor. The rotor axis is ®𝑒1,
which is fixed in the cell body frame, defined by the angles 𝛼 and 𝛽. The transverse direction vectors ®𝑒2
and ®𝑒3 rotate about the rotor axis with a variable rotational speed 𝑊𝑟𝑜𝑡 that we calculate iteratively at
each time step to be consistent with the prescribed motor torque.
The rotational motion of the rotor is transmitted to the filament via the bacterial hook segment. In our

model, the rotor, hook, and filament are described by a single Kirchhoff rod discretized into segments
of equal lengths. The zeroth segment of the rod represents the rotor, while the other segments constitute
the hook and filament (we do not distinguish between hook and filament segments in this study). For the
Kirchhoff rod description, we adopt the common convention that the third director, ®𝐷3, is the tangential

© The Author(s), 2021. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the Creative
Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in
any medium, provided the original work is properly cited.

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

mailto:Vnourian@uwaterloo.ca
http://creativecommons.org/licenses/by/4.0/


E1-2 Vahid Nourian and Henry Shum

�

�3

�
2

Rotor

2

value for Initial estimation Update orientation 

of 3 and 2

	
0 = [1 0 0]

Compute 
1

2

=
�

1
2. 1

N
1
2 . 1−�

�
<0.02

N
o

Yes

1
2

3 = �2
0

2 = �1
0

1 = �3
0

for

{ 2, 3}

Figure S 1. Flowchart of the iterative method to find the rotor orientation, the motor speed and the
internal moment at the joint connects the flagellum to the rotor. The rotor and the corresponding triad
are marked by red color and the first segment of flagellum is represented by dashed line.

direction along the curve. Thus, we define the relationships for the rotor segment

®𝐷0
3 = ®𝑒1, ®𝐷0

1 = ®𝑒2, ®𝐷0
2 = ®𝑒3. (9)

At any given time, we assume that all positions and orientations of the segments are known. The
angular velocities ®𝜔𝑛

𝑠 , 𝑛 = 1, 2, .., 𝑁fl, are determined by solving the system of linear equations described
in the main text. The orientations of segments 𝑛 = 1, 2, ..., 𝑁fl are determined at the next time step using
an explicit time integration rule. The orientation of the rotor, however, is not updated in this manner
because explicit time-stepping would generally not satisfy the motor torque constraint,

®𝑁 1
2 · ®𝑒1 = 𝑇, (10)

where the torque transmitted from the rotor to the filament ®𝑁 1
2 depends on the directors at the zeroth

and first segments of the rod according to the Kirchhoff rod model [equation (14) of the main text with
𝑛 = 0]. Note that this motor torque condition prescribes only the component of torque in the axial
direction. The other two components of torque are due to bending.
In our methodology, we use an iterative method to adjust ®𝑒2 and ®𝑒3 at each time step so that

equation (10) is satisfied. We start with an initial trial value of the rotor angular velocity𝑊 rot equal to
its value at the previous time step. We next update ®𝑒2 and ®𝑒3 based on their values at the previous time
step and the estimate for𝑊 rot. Then, the projection of ®𝑁 1

2 onto ®𝑒1 is compared with the target value of 𝑇 .
According to the obtained error,𝑊 rot is adjusted and the iteration continues so that a desirable error for
the motor torque constraint is achieved. The steps of this iterative method are presented schematically
in figure S1.
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Figure S 2. Comparison of the obtained results for swimming speed of a uni-flagellated bacterium
with Higdon’s.𝑈𝑠𝑤𝑖𝑚/𝑈𝑤 is the progressive speed non-dimensionalized by the linear wavespeed of the
flagellum. 𝑅 and 𝑙 are the cell body radius and the flagellum length, respectively. 𝑁_ represents the
flagellum wavenumber.

S3. Validation

We begin with a comparison of numerical results from our method with those obtained by Higdon
[1979] to validate our boundary element method. In this test, we calculate the swimming speed of a
model bacterium with a single rigid flagellum and a spherical cell body. The flagellum is divided into 30
and 60 segments for the shorter (𝑙/𝑅 = 5) and longer (𝑙/𝑅 = 10) flagellum, respectively, and we choose
the other parameters according to the Higdon’s model. As shown in figure S2, the swimming speeds
of the model bacterium for two different flagellum lengths are in good agreement with the published
results. To validate the elastic model, the equilibrium shape of a flexible filament settles in a viscous
fluid is compared with an analytical solution derived by Xu and Nadim [1994] for the case of small
deformation amplitudes. In particular, if it is assumed that a flexible filament with non-dimensional
length 2 and a large bending modulus (3 in our test) settles horizontally under a uniform force, by
applying the force correction factor the maximum non-dimensional deflection becomes about 0.07 and
so the given solution is valid. If the filament is discretized into 𝑛 = 30 segments, the relative 𝑙2-norm
of the deviation of the numerical displacements 𝑦num from the analytical solution 𝑦an evaluated at
corresponding discrete points is 𝐸𝑙2 =

√︃∑𝑛
𝑗=1 |𝑦an

𝑗
− 𝑦num

𝑗
|2/∑𝑛

𝑗=1 |𝑦an
𝑗
|2 ≈ 0.022. Since the deflection

of the filament is small, the drag coefficient of the flexible filament should be comparable with a rigid
straight rod in a viscous fluid (𝐶𝑁 = 4𝜋`𝑙/(ln(2𝑙/𝑑) − 0.5) (Cox [1970])). The minimum difference
between the drag coefficients achieved in higher stiffnesses is about 3.8%. Such a difference is reasonable
because our filament has finite length and a relatively large thickness whereas the mentioned formula
is accurate only for very long and thin filaments. In the last step of the validation, it is verified that
the swimming speed of a uni-flagellated bacterium with flexible flagellum converges to the rigid model
as the stiffness of the flagellum increases. In particular if we consider Higdon’s model bacterium with
𝑁_ = 1 and 𝑙/𝑅 = 5, the swimming speeds of the model bacterium with flagellum stiffnesses 𝑘 𝑓 = 3,
𝑘 𝑓 = 10 and 𝑘 𝑓 = 15 are respectively 93.6%, 97.4% and 98.7% of the rigid model speed. It is worth
mentioning that the swimming speeds of this model bacteriumwith a flexible flagellum are always lower
than that with a rigid flagellum.
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Figure S 3. Model bacteria with two asymmetric pusher flagella

S4. Swimming trajectory of pusher-pusher model bacterium

In addition to the puller-pusher configuration, pusher-pusher configurations of two flagella may also lead
to double helical trajectories. Our simulations indicate that there is a correlation between the degree
of the asymmetry (asymmetric cell body shape, flagella positions and orientations, the propulsive
forces magnitude and orientations) and the properties of the large helices. In the studied puller-pusher
model bacteria, the rest configurations are almost symmetrical but the differences in the magnitude and
orientations of two propulsive forces (one for the pusher flagellum and one for the puller one) induce a
torque on the cell body that leads to the rotation of the cell body in the directions other than its spinning.
In fact, this rotation is responsible for the appearance of the second (large) helix.
In a pusher-pusher model bacterium with symmetrical configuration, the average effective torque

induced by the propulsive forces on the cell body is near zero and therefore the bacterium moves on
a single helical trajectory, as shown in Fig. 3. The second (larger) helix appears in the trajectory of
the pusher-pusher model bacterium as the rest configuration of the model bacterium is geometrically
asymmetrical. To quantitatively compare the properties of the trajectories in puller-pusher and pusher-
pushermodel bacteria, we have plotted the trajectories of two pusher-pushermodel bacteriawith different
degrees of asymmetry (Figure S3) in Figure S4. The properties of both model bacteria are as stated in
Table S1 and only the orientation of the first flagellum distinguishes Case 1 from Case 2. As expected,
the size of the large helix increases by the degree of the asymmetry. Our measurements indicate that
the pitch and diameter of the large helix in Case 1 (less-symmetrical) are 2.52 and 0.15, respectively,
whereas they are 3.71 and 0.26, respectively, in Case 2. Comparing these values with the closest case
in the puller-pusher configuration (pitch: 3.91 and diameter: 1.08) demonstrates that the amplitude of
the large helix is several times smaller in the pusher-pusher configuration. This difference is likely due
to the bundling effect of the two pusher flagella; flexible flagella have a tendency to bend towards each
other, reducing the degree of the asymmetry in the pusher-pusher configuration and therefore causes the
bacterium to swim smoothly on a smaller helix.
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Figure S 4. Trajectories of the model bacteria with two asymmetric pusher flagella

Table S 1. Parameters defining the shape of the model bacterium and simulation settings.

Description Symbol Dimensionless Value Dimensional Value
Radius of cell body 𝑅 1 0.65 µm
Flagella diameter 𝑑 0.1 65 nm

Each filament total length 𝑙 5 3.25 µm
Flagella rest/initial pitch 𝑝 2 1.3 µm

Flagella rest/initial amplitude 𝑎 0.2 0.13 µm
Amplitude growth factor 𝑘𝐸 2 4.73 µm−1

Flagella relative stiffness (Flexural rigidity) 𝑘 𝑓 (𝐸𝐼) 1 (7.8 pN µm2)
Number of segments on each flagellum 𝑁fl 30 30

Number of triangular elements on the cell body 𝑁head 112 112

Pusher flagellum motor torque in ®
𝑒
(1)
1 direction 𝑇1 -1 -12 pN µm

Puller flagellum motor torque in ®
𝑒
(2)
1 direction 𝑇2 1 12 pN µm

Flagella rest/initial orientation (rotor orientation)
with respect to ®𝑒 (𝐵)1

𝛽 45◦ 45◦

Motor position with respect to ®𝑒 (𝐵)1 𝛼 45◦ 45◦
Total swimming time 𝑇𝑠 1000 0.023 s
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Figure S 5. The swimming trajectory of the model bacterium projected on XY and XZ planes as function
of the flagella orientations (𝛽)(See Movie 4).
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Figure S 6. The swimming trajectory of the model bacterium projected on XY and XZ planes by
changing the flagella places on the cell body (𝛼)(See Movie 5).
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Figure S 7. The swimming trajectory of the model bacterium projected on XY and XZ planes as function
of motor torque ratio 𝑅𝑇 = |𝑇1 |/|𝑇2 | (See Movie 6).
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