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We enclose here supplemental data, figures and movies, following the development of the
accompanying paper.

1. Captions of the movies:

Movie S1

Surface flows of a Leidenfrost drop viewed from the top throughout its life played in real time. A puddle
(' ≈ 3.5 mm) is initially deposited in a groove heated at T = 350◦C. Hydrophobic tracers standing at the
interface draw convective chaotic patterns that tend to organize into a 4-cell symmetric structure. For
' ≈ 1.8 mm, drop vibrations intensify and the symmetry breaks. Then, the drop starts to roll. Rolling
persists until tracers saturate and form a static solid shell at the surface. The white bar indicates 2 mm.

Movie S2

Side view of a water drop levitating on a plate heated at 350◦C observed with an infrared camera using
a calibration range from −40◦C to 150◦C, only suitable for water, and not brass. The bar indicates 5
mm, and the movie is sped up by a factor 3.2, while the right-handed lateral color bar gives access to
the surface temperature of the drop.

2. Heat transfer modelling on mΩ�
The heat transfers on the drop interface (on mΩ� ) are provided by the convection and conduction to
the surrounding air, and also by the evaporation, which cools down the liquid as sketched in figure
3 of our manuscript. We write the conductive heat flux as 9: , the convective heat flux 92 , and the
evaporative-driven cooling flux as 94 (Bergman et al., 2011). At equilibrium, these heat fluxes must
balance1

9: = 92 + 94 . (1)

The conductive and convective heat fluxes at the interface are respectively modelled with Fourier’s
diffusive law and with the semi-empirical Newton’s law for convection. Ultimately, the evaporation-
driven cooling term is proportional to the energy required to produce a mass flux =′ at the interface.

1Weneglect here the radiative heat flux 9A , which, according to Stefan-Boltzmann law, scales as f(� nA) 4, where f(� = 5.67 ·10−8 W/m2/K4

is the Stefan’s constant and nA ≈ 1 the body emissivity. Indeed, the typical convective heat transfer coefficient ℎ2 for liquid subjected to forced
convection is 104 W/m2/K, such that 9A / 92 � 1.
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E1-2

Denoting the latent heat for vaporization as L, it comes 94 = =′L. The respective contributions are thus

9: = −(: · ∇))n, (2)
92 = ℎ2 () − )0), (3)
94 = =

′L, (4)

where : is the liquid thermal conductivity, n the normal unit vector, ℎ2 the convective heat transfer
coefficient and )0 the ambient air temperature. The evaporation rate =′ is the mass flux per unit area of
water molecule transferring from a liquid to a gas state across the drop interface, which can be expressed
as:

=′ = ℎ< (B0 ()� ) − qRHB0 ()0)), (5)

where ℎ< is the evaporative heat transfer coefficient, B0 the saturation vapor density and qRH the
relative humidity. The saturation vapor density is strongly dependent on the temperature and it increases
approximately as ∼ )3, which accelerates the evaporation cooling at high temperature.

In order to determine ℎ<, we introduce the Sherwood number (ℎ, the dimensionless concentration
gradient at the interface mΩ� , commonly used in transport phenomena to compare convective mass
transfer to diffusion mass rate. Denoting �E0 as the water vapor-air binary mass diffusivity and � the
characteristic distance on which the transfer is operated, the evaporative heat transfer coefficient ℎ< can
be estimated using the the mass transfer correlation law as

ℎ< = (ℎ
�E0

�
. (6)

The Sherwood number can be approximated using Ranz-Marshall correlation which related the con-
vective heat and mass transfers around spherical drop (Ranz & Marshall, 1952; Bergman et al., 2011)
:

(ℎ = 2 + 0.6 ('40)1/2 ((20)1/3 , (7)

where '40 is the Reynolds number associated to the air flow generated around the drop owing to thermal
convection and (20 the Schmidt number. The '40 can be determined using the relation of the kinetic
energy (due to the convective flow in air with typical velocity +0) and the potential energy (due to
thermobuoyant effect, operating at the characteristic vertical length !0):

d0+
2
0 ≈ 6V0 ()? − )∞)!0, (8)

reads

'40 =
!0+0

a0
=

√
6V0!

3
0

d0a
2
0

∼
√
'00

%A0
. (9)

where '00 is the Rayleigh number defined as

'00 =
6V0 ()? − )∞0 )!3

0

a0^0
, (10)

and %A0 the Prandtl number in air, which is the ratio of the momentum and thermal diffusivities:

%A0 =
a0

^0
. (11)

The Schmidt number (20 for the ambient air is defined as the ratio of the momentum and mass
diffusivities

(20 =
a0

�E0
. (12)
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Flow E1-3

Those dimensionless numbers are evaluated by the tabulated physical properties for water and gas, and
their variations with respect to the temperature ) as summarized in table 1. All the physical and semi-
empirical parameters relative to water, vapor, air and their interface, are extracted from the literature
(e.g. EngineeringToolBox (2001)) at the lumpedmean temperatures of the phase they refer to (at roughly
80–100◦C for water and ()? − )∞)/2 ≈ 100◦C for air). We thus get %A0 = 0.71. Assuming that air
and vapor behave like ideal gas and considering temperature variations from 80◦C to 100◦C for the air,
we finally get '40 ' 125 and (20 ' 0.60, so that, according to the relation (7), (ℎ = 7.8. Hence, the
evaporative heat transfer coefficient ℎ< can be deduced from (6) ℎ< = 0.07 m/s.

Regarding now the contribution of thermal convection 92 , we use a similar approach to assess the
convective heat transfer coefficient ℎ2 which can be represented by the Nusselt number. The Nusselt
number #D0 is defined as the ratio between convective to conductive heat transfers in air at the drop
vicinity:

#D0 =
ℎ2�

:0
. (13)

As it represents the dimensionless temperature gradient at the interface, it plays an analogous role than
the Sherwood number for mass transfer. From this analogy, the Ranz-Marshall correlation for heat
convection reads as

#D0 = 2 + 0.6('40)1/2 (%A0)1/3. (14)

We thus find #D0 ≈ 8, which means that heat convection in air dominates heat conduction around
the drop. To evaluate the convective heat exchange from the air to the droplet interface, Biot number
(�8) is introduced, which compares the heat transfer resistance inside the drop (of convective nature) to
the resistance to heat exchange at its surface (of conductive nature), expressed in terms of the thermal
conductivity of air and of water and of the Nusselt number related to air:

�8 =
ℎ2�

:
=
:0

:
#D0 = 0.4. (15)

We then have ℎ2 = 63 W/m2K. We note that Tam et al. (2009) used the effective Biot number from the
effective heat transfer coefficient which is the sum of the convective and evaporative heat fluxes divided
by the temperature difference between ambient and the droplet surface temperature () − )0).

3. Inner drop temperature

As a complement (and calibration) to the surface temperature mapping with a side-view infrared
camera, a 100 `m radius thermocouple is inserted to a height I into a drop (the reference I = 0
being on the substrate and � being the drop height) to provide the liquid inner temperature ) . This
measurement is intrusive and does not permit the access to temperature close to the boiling point, as
bubble nucleate on the thermocouple so as the contact liquid/solid is lost. Nevertheless, the temperature
profile displayed in figure 1, confirms the existence of vertical temperature gradient of a tens of degrees,
decreasing from the drop bottom to its apex (cooled down by ambient air). The temperature inside a
drop increases linearly from 88.5 ± 0.5◦C at the drop apex, that is for I/� ≈ 1, to 92.5 ± 0.5◦C for
I/� ≈ 0.4, where the thermocouple dewets owing to the formation of bubbles. Extrapolating the linear
fit to the drop base (I/� ≈ 0), we expect there a temperature of 94.5 ± 0.5◦C, slightly lower than the
water boiling point, as shift we interpret as arising from a deviation from the linear trend close to the
evaporating interface (Laplace’s equation is modified by the loss term), but also as a consequence of
the endothermic character of evaporation.
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E1-4

Variable Symbol Mean value
Liquid (maintained at ) ≈ 100◦C)

Density d0 d0 = 958 kg/m3

Thermal expansion VF VF = 6.88 · 10−4 m3/kg/◦C
Kinematic viscosity a a = 3 · 10−7 m2/s
Thermal diffusivity ^ ^ = 0.17 · 10−6 m2/s
Thermal conductivity : : = 0.6 W/m/K

Liquid/air interface
Surface tension f0 58 mN/m (at ) = 100◦C)

Change in surface tension with ) f1 f1 = 0.185 mN/m/K
Evaporation latent heat L L()) = 2503 − 2.44 × ) kJ/kg
Convective heat transfer ℎ2 ℎ2 = 63 W/m2K from eq.(15)

Evaporative heat transfer coefficient ℎ< ℎ< ≈ 0.07 m/s from eq.(6)
Evaporative mass flux per unit area =′ =′ ≈ 0.01kg/m2/s from eq.(5)

Air/vapor (ideal gas at ) ≈ ()? − )∞)/2)
Kinematic viscosity a0 a0 = 20 · 10−6 m/s
Thermal diffusivity ^0 ^0 = 40 · 10−6 m2/s
Thermal conductivity :0 :0 = 26 · 10−3 W/m · K
Thermal expansion V0 V0 ()) = 1/) ≈ 3.5 · 10−3  −1

Water vapor-air binary mass diffusivity �E0 �E0 ()) = 4.7 · 10−9 × )3/2 m2/s
Air relative humidity qRH qRH = 0.3 − 0.2

Saturation vapor density B0
B0 (80◦C) = 0.29 kg/m3,
B0 (100◦C) = 0.59 kg/m3

Table 1. Physical and semi-empirical parameters relative to water, vapor, air and their interface,
involved in our analysis. Values are extracted from literature (e.g. EngineeringToolBox (2001)), and are
assessed at the mean temperature of the phase they refer to. Temperature sensitivity is detailed.

T 
(°

C)

100

95

90

85

80
0 0.2 0.4 0.6 0.8 1

z/H
Figure 1. Temperature ) along the central vertical axis of a water drop (' = 1.67 ± 0.15 mm, and
� ≈ 2 mm), obtained by lowering a thin thermocouple at a speed dI/dC = −0.1mm/s in water. The
temperature difference Δ) between the top and the bottom of the drop is found to be a few degrees. At a
distance I/� ≈ 0.4, water partially dewets the thermocouple and moves away on its side, which hinders
temperature measurement for I/� < 0.4. A linear fit of the temperature field gives ) = −6.6I/� + 94.6,
expressed in ◦C, drawn with a dashed line.
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Flow E1-5

4. Ambient air temperature

In order to solve the full thermal problem and to be able to prescribe the temperature at the drop free
interface, we focus on the thermal boundary condition at the drop upper interface. The air around the
plate is also heated and we expect its temperature to decrease as the vertical coordinate I increases. We
here try to characterize the temperature field above the plate, denoted as )0 (I). The attempt to use a
thermocouple to access the temperature in air failed, as air flows driven by natural convection cool down
the thermocouple extremity, and the temperature value read considerably fluctuates. Alternatively, a
silicon wafer with thickness 500 `m, is placed above the plate heated at )? = 300◦C. The high value
of the thermal conductivity of silicon (about 1 W/cm/K) guarantees a fast and efficient thermalization
with the ambient. We use a side-viewed infrared, calibrated on silicon substrates on the desired range of
temperature, to map the temperature distribution )0 (I) above the plate. The measurement is carried out
under the same conditions than that of the previous experiments but in the absence of a Leidenfrost drop.
The presence of a Leidenfrost drop may slightly disturb the temperature field )0 (I) by cooling it down.

80 90 100 110 120
0

2

4

6

8

10

T (◦C)

z
(m

m
)

Experiment
Ta = 120− 5.5z

Figure 2. Temperature of the ambient air at a distance I above a plate heated at )? = 300◦C, accessed
with an infrared camera pointing on a highly conductive silicon wafer, in the absence of a drop. The
dark horizontal line indicates I = 4 mm, which corresponds to the maximum height of the droplet at
C = 0. Data are adjusted with a linear fit of equation )0 = 120− 5.5I plotted in red. Those thermal data
are used as input for the heat transfer modelling in §2.

The temperature distribution )0 (I) in the air is reported in figure 2. )0 (I) decreases as the distance
I from the plate increases and can be approximated by the linear fit )0 (I) = 120 − 5.5I which is used
in the numerical modelling.

5. Effect of ambient temperature

In the experiments, various plate temperatures (from )B = 250◦C to )B = 450◦C) showed a robust
critical radius for the mode transition from < = 2 to < = 1. Numerically, the bottom temperature of
the droplet is fixed to the boiling temperature thus, the change of the plate temperature does not impact
on the numerical modelling. However, this variation of the plate temperature can affect the ambient air
temperature which involves the heat exchange on mΩ� . In the manuscript, we used the experimentally
measured temperature which is obtained for )B = 300◦C. Therefore, in this appendix, we investigate the
effect of the surrounding air temperature on the stability analysis. The stability analysis is conducted for
two additional air profiles as shown in figure 3: higher bottom temperature )0 = 150− 5I and smoother
gradient )0 = 120 − 3I. Other parameters are kept the same (f1,eff = 4 · 10−5f1).

The stability results are depicted in figure 4. The air temperature slightly moves the critical radius of
the mode transition as summarized in table 5. Compare to the results using the measured air temperature
()0 = 120− 5.5I), the critical radii for higher temperature )0 = 150− 5I are increased by 0.2 mm while
the one with smoother slope )0 = 120 − 3I has almost no impact on the critical radii. Again, all these
values fall into the experimental observation.
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Ta = 120− 5.5z
Ta = 150− 5z
Ta = 120− 3z

Figure 3. Various air temperatures. The thick blue curve is experimental data. The red line what is
used in the manuscript and black and green are two tested air temperatures.

)0 '2,3→2 (mm) '2,2→1 (mm)
120 − 5.5I (manuscript) 2.1 1.3

150 − 5I 2.3 1.5
120 − 3I 2.1 1.3

(a)
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Figure 4. (a) )0 = 150 − 5I (triangle), (b) )0 = 120 − 5.5I (circle) and is close to the experimental
data and (c) )0 = 120 − 3I (cross).

6. Influence of the substrate temperature on the critical radius

The experiment proposed by (Bouillant et al., 2018b) is thus reproduced in the SI (as schematized
in figure 5a) for plate temperatures ranging from 250 to 450◦C and we display in figure 5(b) the
acceleration 0 of about 80 drops as a function of their radii '. Over this broad range of plate temperatures,
accelerations exhibit similar jumps from about 1 mm/s2 (in the regime where drops are flattened by
gravity), up to 60 mm/s2 below ' ∼ 1 mm (in the self-rotation and self-propelling regime) (Bouillant
et al., 2018a). The spontaneous apparition of internal rolling is robust and consistent. The onset for the
transition from < = 2 to < = 1, referred as '2→1, is found within the interval [1, 1.5] mm and weakly
varies over the range of temperature explored ()? = [250, 450◦C]) as seen in figure 5(c).

7. Baseflow with effective "0

Asmentioned in §4 of the accompanying paper, there exist uncertainties regarding on the realMarangoni
effect of the water interface. In this section, discuss the choice of "0eff on our results. The surface
tension variation f1 is multiplied with a constant to have f1,eff ≤ f1 then "0eff is evaluated with f1,eff
and the resulting Δ) .

Figure 6 shows the baseflow for increasing values of "0eff , for a drop with ' = 3 mm. The amplitude
of the maximum velocity increases dramatically from 5 cm/s to 5000 cm/s as "0eff is increased from
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Figure 5. Self-propulsion of Leidenfrost drops for different plate temperature )? . (a) Schematic of the
experiment described in Bouillant et al. (2018b): trajectories of about 80 drops initially at rest and
with radius set by the height of the dispensing needle are recorded from above. Below a critical radius
'2→1, drops self-propel in all directions with uniform accelerations. (b) Acceleration 0 deduced from
quadratic fits as a function of ', for plate temperatures )? = 250◦C, 350◦C and 450◦C. Drop mobility
gets markedly enhanced below '2→1 (indicated with the dotted lines), the footprint for the transition
from symmetric mode (< = 2) to asymmetric solid-like rolling mode (< = 1). (c) Radius '2→1 as a
function of )? .

12 to 12762 (f1,eff increased from 4 · 10−5 to 1, accordingly). The stronger the flow, the more efficient
the mixing. This tends to homogenize and increase the drop temperature, resulting in a decrease in Δ) .
The baseflows depicted in figure 6b,c,d overestimate the experimental observations, where the velocity
is typically 5 cm/s. The case f1 = 1 yields to unreasonable inner velocities that do not match reality,
prompting us to use effective surface tension variation coefficient f1,eff ≤ f1.
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97
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99

100

Figure 6. Baseflow for a droplet ' = 3mm for different"0eff: (a)"0eff = 12.1 (f1,eff = 4·10−5f1), (b)
"0eff = 23.0 (f1,eff = 1 ·10−4f1), (c)"0eff = 241 (f1,eff = 3 ·10−3f1) and (d)"0eff = 12762 (f1,eff =
1 · f1). The maximum velocities are 5 cm/s, 20 cm/s, 100 cm/s and 5000 cm/s, respectively.

The value for f1,eff ≤ f1 can be assessed such that the surface tension variation gives rise to a
Marangoni velocity + ∼ f1Δ)/(d0a) close to the reported velocities + ≈ 5 cm/s:

f1,eff ∼ d0a+/Δ) ≈ 5.91 · 10−7 N/m/K = 3 · 10−3f1. (16)
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Alternatively, one could assess the effective surface tension variation f1,eff such that the resulting
temperature difference Δ) best agrees with the temperature profiles reported in figure 2 of the main
manuscript. Figure 7 compares the expected surface temperature ) along the boundary mΩ� for ' =

(a)

0 1 2 3 4

70

80

90

100

z (mm)

T
(◦
C
)

R = 3.5 mm

Experiment

σ1,eff = 4 · 10−5σ1

σ1,eff = 3 · 10−3σ1

σ1,eff = 1 · σ1

(b)

0 1 2 3 4

z (mm)

R = 3 mm

Figure 7. Surface temperature on Leidenfrost drops with radius (a) ' = 3.5 mm and (b) ' = 3.0 mm
as a function of the altitude I for the effective surface tension variations 4 · 10−5f1, 3 · 10−3f1 and
1.0 · f1. These values results in "0eff = 12.8, 2.56 · 102 and 1.3 · 104, respectively, for ' = 3.5 mm
and "0eff = 12.1, 2.4 · 102, and 1.3 · 104 for ' = 3 mm. The altitude I, expressed in millimeter, is
taken equal to zero at the drop base. Experimental data extracted from side-viewed infrared mapping
of Leidenfrost puddles (taken from figure 2 in the manuscript) are showed as black dots.

3.5 mm and 3 mm for three different values f1,eff , as compared to the experimental data (black dots,
reproduced from figure 2(b) of the main article). Although none of the three curves perfectly matches
in slope the experimental profiles, the curve f1,eff = 4 · 10−5f1 (red) best captures the experimental
profiles. Moreover, the temperature difference between the top and the bottom (Δ) = 25◦C) is well
captured by the curve f1,eff = 4 · 10−5f1. The temperature difference Δ) and effective Marangoni
number "0eff are summarized in table 2 for increasing f1,eff .

f1,eff Δ) (◦C ) "0eff comments
4 · 10−5f1 26.6 12.8 chosen f1,eff
3 · 10−3f1 7.0 241 from eq. 16

1 · f1 1.1 12762 exact
Experiment 25

Table 2. The temperature difference Δ) predicted in drops with radius ' = 3.5 mm as a function of
effective surface tension gradient f1,eff .

8. Marangoni and Rayleigh numbers for "0 ≠ 0

Figure 8(a,b) shows the values "0eff and '0, using f1,eff = 4 · 10−5f1, as a function of the radius '
(decreasing from left to right). Both numbers decrease as the radius decreases. The Marangoni number
varies from 13 to 5 while the Rayleigh number does from 180000 to 8000 by changing the drop size
from ' =3.5 mm to 0.6 mm. Those parameters control the stability of the droplets and are also affected
by the evaporation-driven size reduction. We note that the '0 number decreases faster with the droplet
radius than "0 as it is a function of �3 while "0 is proportional to �. We discuss in the manuscript
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Figure 8. The estimated (a) "0eff with f1,eff = 4 ·10−5f1 and (b) '0 as a function of radius of droplet.
'0 when "0 = 0 (pure buoyancy driven) is also plotted with empty circles. The radius decreases from
left to right.

and show in Figure 4(d) the mode growth rates in the case where "0 = 0. The < = 1 mode is the only
unstable mode. The corresponding Rayleigh number (for "0 = 0, < = 1) is plotted in figure 8(b), using
dark empty circles. It decreases from 20000 to 10 as ' decreases from 2 to 0.5 mm.

9. Rayleigh number for "0 = 0
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Figure 9. (a) Growth rate for "0 = 0 and (b) corresponding Rayleigh number.

Figure 9 shows the growth rate and the corresponding Rayleigh number '0. While '0 decreases
monotonically with the decrease of radii, the unstable mode < = 1 shows the maximum growth rate
around ' ∼ 1mmaround '0 ∼ 7000. In classical Rayleigh-Benard problemwith prescribed temperature
difference, '0 is an indicator of the onset of instability and the bigger '0 results in the faster growth of
instability. In the Leidenfrost drop, however, as '0 is a part of the base flow solution, it may not have
lost the role of indicator for the instability. One possible reason for this growth rate behaviour could
be the flattened base make the rolling solution less stable. The drop base is flattened on a length that
increases quadratically with ' and vanishes as ' decreases. That would be coherent with the stability
recovery for ' < 0.8 mm (Figure 9a).

10. Effect of heat transfer coefficient variation

In this section, the effect of the variation of evaporative (ℎ<) and convective (ℎ2) heat transfer coefficients
on the base flow and stability analysis are shown. These two coefficients are evaluated by correlation
laws using (7) and (14). Therefore, these values may contain some uncertainties. To access the limitation
of this, a simple sensitivity analysis is conducted by changing the evaluated ℎ< and ℎ2 ±20% for both
base flow and the stability analysis.
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Figures 10–11 show the effect of the variation of evaporative (ℎ<) and convective (ℎ2) heat transfer
coefficients on the base flow. When ℎ< varies ±20% of the original estimated value, the base flow varies
little and the estimated effective Marangoni numbers also varies ±14%. On the other hand, when the
convective heat transfer coefficient ℎ2 varies ±20%, the impact on the base flow is even lower: "04 5 5
varies less than 1%.
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Figure 10. Effect of evaporative heat transfer coefficient (ℎ<) variation on the base flow for drop
' = 1.9 mm : (a) 0.8ℎ<, (b) ℎ< and (c) 1.2ℎ<. All other variables remained the same. The estimated
"04 5 5 for are "04 5 5 = 10.3, "04 5 5 = 12.1 and "04 5 5 = 13.8, respectively.
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Figure 11. Effect of convective heat transfer coefficient (ℎ2) variation on the base flow for drop ' = 1.9
mm : (a) 0.8ℎ2 , (b) ℎ2 and (c) 1.2ℎ2 . All other variables remained the same. The estimated "04 5 5 for
are "04 5 5 = 12.2, "04 5 5 = 12.1 and "04 5 5 = 12.0, respectively.

The impact on the stability analysis for example < = 1 mode is shown in Figure 12. The variation
of growth rate is also limited to ∼ 10% for the variation of ℎ< and ∼ 1% for the variation of ℎ2 . In
summary, the variation of the heat transfer coefficients evaluated from the correlation law have slight
impact on the results but does not change the major flow structures and their stability nature.
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Figure 12. Effect of (a) evaporative (ℎ<) and (b) convective (ℎ2) heat transfer coefficient variations
on the growth rate for < = 1 for drop ' = 1.9 mm.
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