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1. Derivation of the adjoint model and gradients for surface waves

Define an inner product

⟨ 𝑓 , 𝑔⟩ =
∫
𝑡

∫
𝑦

∫
𝑥

𝑓 (𝑥, 𝑦, 𝑡)𝑔∗ (𝑥, 𝑦, 𝑡)𝑑𝑥𝑑𝑦𝑑𝑡, (S1)

where 𝑔∗ is the complex conjugate of function 𝑔. Similarly, the cost function can be written as

𝐽 =
1
2

∫
𝑡

∫
𝑦

∫
𝑥

(𝜂 − 𝜂𝑀 )2𝑑𝑥𝑑𝑦𝑑𝑡 = 1
2
⟨𝜂 − 𝜂𝑀 , 𝜂 − 𝜂𝑀⟩ . (S2)

LetW(𝒒) = 0 denote the wave model, i.e., equations (2.1) and (2.2) of the main paper, where 𝒒 =

[𝜂,Φ]𝑇 with the superscript 𝑇 denoting the transpose, and define a Lagrangian as

𝐿 = 𝐽 − ⟨W(𝒒), 𝝀⟩ , (S3)

where 𝝀 = [𝜆1, 𝜆2]𝑇 are the Lagrangian variables. BecauseW(𝒒) = 0 at every time instant, 𝐿 is equal
to 𝐽. Given a small perturbation 𝛿𝜂0 to the initial surface elevation 𝜂0 and perturbation 𝛿Φ0 to the initial
velocity potential Φ0, there is a perturbation 𝛿𝐿 to the Lagrangian. Then 𝛿𝐿 is expressed as

𝛿𝐿 = ⟨𝛿𝜂, 𝜂 − 𝜂𝑀⟩ −
〈
W

′

(𝜹𝒒), 𝝀
〉
, (S4)

whereW′

(𝒒) = 0 is the linearised wave model at 𝒒0 = [𝜂0,Φ0]𝑇 . The adjoint equationsW∗, i.e.,
equations (2.3) and (2.4) of the main paper, satisfy〈

W
′

(𝜹𝒒), 𝝀
〉
=
〈
𝜹𝒒,W∗

(𝝀)
〉
+ 𝐵.𝑇 ., (S5)

where B.T. denotes the boundary term

𝐵.𝑇 . =

∫
𝑦

∫
𝑥

[
𝛿𝜂(𝑡 𝑓 )𝜆1 (𝑡 𝑓 ) + 𝛿Φ(𝑡 𝑓 )𝜆2 (𝑡 𝑓 )

]
𝑑𝑥𝑑𝑦

−
∫
𝑦

∫
𝑥

[𝛿𝜂(𝑡0)𝜆1 (𝑡0) + 𝛿Φ(𝑡0)𝜆2 (𝑡0)] 𝑑𝑥𝑑𝑦.
(S6)
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Set 𝜆1 (𝑡 𝑓 ) = 𝜆2 (𝑡 𝑓 ) = 0 as the initial conditions for the adjoint model andW∗(𝝀) = [𝜂 − 𝜂𝑀 , 0]𝑇 , 𝛿𝐿
can be written as

𝛿𝐿 = −𝐵.𝑇 . =
∫
𝑦

∫
𝑥

[𝛿𝜂(𝑡0)𝜆1 (𝑡0) + 𝛿Φ(𝑡0)𝜆2 (𝑡0)] 𝑑𝑥𝑑𝑦. (S7)

Because

𝛿𝐽 = 𝛿𝐿 =

∫
𝑦

∫
𝑥

(
𝜕𝐽

𝜕𝜂0
𝛿𝜂0 +

𝜕𝐽

𝜕Φ0
𝛿Φ0

)
𝑑𝑥𝑑𝑦, (S8)

the gradients of the cost function to the initial wave field are

𝜕𝐽

𝜕𝜂0
= 𝜆1 (𝑡0),

𝜕𝐽

𝜕Φ0
= 𝜆2 (𝑡0).

(S9)

Considering the dependence of the initial velocity potential on the initial surface elevation as shown by
equation (2.8) of the main paper, 𝛿𝐿 can be further written as

𝛿𝐿 = −𝐵.𝑇 .

=

∫
𝑦

∫
𝑥

{
𝛿𝜂(𝑡0)𝜆1 (𝑡0) + F −1

[
−𝑖𝜔
|𝒌 | sgn(𝑘𝑥)F (𝛿𝜂(𝑡0))

]
𝜆2 (𝑡0)

}
𝑑𝑥𝑑𝑦

=

∫
𝑦

∫
𝑥

𝛿𝜂(𝑡0)
{
𝜆1 (𝑡0) − F −1

[
−𝑖𝜔
|𝒌 | sgn(𝑘𝑥)F (𝜆2 (𝑡0))

]}
𝑑𝑥𝑑𝑦.

(S10)

The gradient in this case is then

𝜕𝐽

𝜕𝜂0
= 𝜆1 (𝑡0) − F −1

[
−𝑖𝜔
|𝒌 | sgn(𝑘𝑥)F (𝜆2 (𝑡0))

]
. (S11)

Then Φ0 is updated using equation (2.8) of the main paper to initialise the wave model.

2. Validation of the adjoint gradients

To verify the gradients calculated by the integration of the adjoint equations, we compare the results
with those calculated directly from the finite difference method. The benchmark solution of the gradient
information is obtained using a finite difference scheme, in which the gradient of the cost function with
respect to 𝜂0 at any point (𝑖, 𝑗) is calculated as

𝜕𝐽

𝜕𝜂0 (𝑖, 𝑗)

����
𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘

=
𝐽𝜂0+𝛿 − 𝐽𝜂0

𝛿
, (S12)

where 𝐽𝜂0 is calculated by equation (2.5) of the main paper with 𝜂0, and 𝐽𝜂0+𝛿 is calculated by adding
a small perturbation 𝛿 to 𝜂0 (𝑖, 𝑗). We set the magnitude of 𝛿 to be 1.0 × 10−6 m, sufficiently small to
reduce the error caused by the finite difference approximation. The gradient of the cost function with
respect to Φ0 is calculated in a similar way. Figure S1 shows the comparison of the gradients at 20
different grid points in the first optimization iteration for case KA09-N00 in the main paper with the
initial guess (𝜂0,Φ0) = (0, 0). As shown in figure S1, the adjoint gradients agree with the gradients
calculated by the finite difference method.
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Figure S1. Comparison between the adjoint gradient by the adjoint model in table 1 of the main paper
and the benchmark gradient calculated using the finite difference method in Eq. (S12) at 20 grid points
for case KA09-N00 of the main paper: (a) the values of normalised 𝜕𝐽/𝜕𝜂0 in FPM and CPM; (b) the
values of normalised 𝜕𝐽/𝜕Φ0 in FPM (note that 𝜕𝐽/𝜕Φ0 are computed only in FPM). The gradients
are normalised by 𝜎𝜂 = 0.18 𝑚 and 𝜎Φ = 1.04 𝑚2/𝑠, the root mean square of the initial true surface
elevations and surface velocity potential, respectively.
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