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1. Stability Analysis for A-dipoles
In addition to the case of a T-dipole examined in the main text, we consider an A-dipole, as per the
definition of Kanso and Tsang (2014). The only difference between the two cases is in the form of the
hydrodynamic turning, which now reads as

Ω 𝑓 (𝑡) = 𝑣𝑣𝑣⊥𝑓 (𝑡) ·
[
∇𝑈𝑈𝑈 𝑓 (𝑟𝑟𝑟 𝑓 (𝑡))𝑣𝑣𝑣 𝑓 (𝑡)

]
, (1)

which can be expanded as follows:

Ω 𝑓 (𝑡) = ±
2𝑟2

0, 𝑓
𝑣0, 𝑓

𝜌(𝑡)6 ((−3Δ𝑥(𝑡)2Δ𝑦(𝑡) + Δ𝑦(𝑡)3) cos(2𝜃 𝑓 (𝑡) + 𝜃 𝑓 (𝑡))+

(Δ𝑥(𝑡)3 − 3Δ𝑥(𝑡)Δ𝑦(𝑡)2) sin(2𝜃 𝑓 (𝑡) + 𝜃 𝑓 (𝑡))), (2)

where the plus (minus) sign is for 𝑓 equal to 1 (2).
Using this expression for the hydrodynamic turning changes the stability analysis for in-line

swimming, whose state matrix, upon following the exact steps of the main text, becomes

𝐴in−line =


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0 𝑣0
𝑑3 0 0 0 0 0

0 0 0 𝑣0
𝑑

(
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0
𝑑2

)
𝑣0

(
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0
𝑑2

)
0 0 0

0 0 0 0 0 0 0 0
0 0 0 0 0 0 𝑣0

(
1 + 𝑟2

0
𝑑2

)
0

0 0 0 0 0 1 0 0
0 0 0 0 −𝑘 𝑝𝜂𝑑 −𝜂 − 𝜂𝑣0

𝑑
+ 𝑘𝑝𝜂𝑑

2 + 𝑘𝑣𝜂𝑣0 − 𝑣0
𝑑

(
1 + 𝑟2

0
𝑑2

)
0 0 0 0 0 0 0 1
0 0 0 0 12𝜂𝑣0𝑟

2
0

𝑑3 + 2𝑘 𝑝𝜂𝑑 0 −𝑘 𝑝𝜂𝑑 − 2𝑘𝑣𝜂𝑣0 −𝜂



. (3)
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In-line swimming is asymptotically stable if and only 𝐴in−line,22 is Hurwitz. Similar to the main text,
by applying the Routh-Hurwitz criterion, we can learn about several interesting limit cases. Specifically,
we find that: i) for 𝑑 sufficiently large, in-line swimming is asymptotically stable; ii) for small values
of 𝑑, in-line swimming is asymptotically unstable; iii) for 𝜂 sufficiently large, large values of 𝑘𝑣 will
hinder stability, while the effect of 𝑘 𝑝 is modulated by 𝑑 (𝑑 <

√
3𝑟0, large gains are detrimental to

stability, while for 𝑑 >
√

3𝑟0, they could guarantee stability).
The study of side-by-side swimming follows closely the previous analysis. However, there are some

key differences between these schooling patterns. Unlike in-line swimming, side-by-side swimming
requires a specific distance between the animals, which is obtained by balancing the repulsion from

hydrodynamics with attraction due to social interactions, leading to 𝑑 =
4

√︂
2𝑟2

0 𝑣0
𝑘𝑝

. While maintaining

this distance, the advective velocity is 𝑈𝑈𝑈 𝑓 (𝑟𝑟𝑟 𝑓 (𝑡)) = − 𝑟2
0 𝑣0
𝑑2 𝑖𝑖𝑖 for 𝑓 ∈ {1, 2}, thereby slowing down the

motion of the fish that will swim at a reduced speed of 𝑣0

(
1 − 𝑟2

0
𝑑2

)
.

Similar to in-line swimming, we can derive the equations of motion for a perturbation about this
nominal solution, that is,

𝐴side−by−side =


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0 0 𝑣0

(
1 + 𝑟2

0
𝑑2

)
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0 𝑣0
𝑑3 0 0 0

0 0 0 1 0 0 0 0
0 0 𝑘 𝑝𝜂𝑑 −𝜂 𝑘 𝑝𝜂 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 𝑣0

(
1 − 𝑟2

0
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0
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(
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)
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

, (4)

with state variables ordered as 𝑧𝛿 (𝑡) =
[
𝑥 𝛿 (𝑡), 𝑦̄ 𝛿 (𝑡), 𝜃 𝛿 (𝑡), 𝜔̄𝛿 (𝑡),Δ𝑥 𝛿 (𝑡),Δ𝑦 𝛿 (𝑡),Δ𝜃 𝛿 (𝑡),Δ𝜔𝛿 (𝑡)

]T.
This system is already in a block-triangular form, in which the block on the top of the diagonal,

𝐴side−by−side,11, has a block-triangular structure, with two zero eigenvalues corresponding to the motion
of the center of mass. The average rotation of the pair has a nontrivial dynamics, which is characterized

by two real eigenvalues 𝜂

2

(
−1 ±

√︃
1 + 4𝑘𝑝𝑑

𝜂

)
. One of these eigenvalues is always positive, indicating

that perturbations will trigger the exponential growth of the average orientation away from zero. The
growth of the average orientation is not accompanied by any change in the relative distance along the
𝑋-axis (fifth row of the matrix) that could maintain the side-by-side pattern. As a result, side-by-side
swimming is always unstable. The remaining three non-zero eigenvalues of the block on the bottom of
the diagonal, 𝐴side−by−side,22, shape the dynamics of the relative orientation and relative distance along
the 𝑌 -direction, which, however, bear no effect on the stability of the pattern.

2. Results for A-dipoles
Following the same procedure described in the main text to generate Fig. 2, we obtain calibrated pa-
rameters in Fig. 1, from which we do not observe notable differences with respect to the case of the
T-dipoles in the main paper. Even less differences are observed when assessing the the predictive power
of the model, whereby we recover all the statistical differences determined in Fig. 2 in the main text.

Finally, we report details about stability of in-line swimming for calibrated model parameters on A-
dipoles in Fig. 2, mirroring Fig. 4 in the main text. Some qualitative differences can be noted between
A- and T-dipoles due to their opposite response to the advective flow. First, using calibrated values of
𝑘 𝑝 and 𝑘𝑣 , we always attain stability for any choice of 𝑑 above approximately 2/3 BL, rather than 1
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Figure 1. Calibrated model parameters: (a) characteristic length; (b) speed; (c) baseline activity; (d)
mean reversion rate; (e) jump frequency; (f) jump intensity; (g) gain parameter for attraction; and (h)

gain parameter for alignment. The colored area in each violin plot is the probability density and
coloured circles are individual calibrations. Thick gray bars indicate first and third quartiles; thin

gray bars identify minimum and maximum values; and white circles are the median..

BL as in the main text. Second, for a given value of 𝑑, increasing either gain may hamper stability,
different frm T-dipoles that seemed to be negatively affected by only large values of 𝑘 𝑝 .
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Figure 2. Stability analysis of in-line swimming as a function of social and hydrodynamic
interactions, in the form of heat maps of the maximum real part of the eigenvalues of 𝐴in−line,22 in (3)
for: (a,b,c) 𝑟0 = 3.1 mm and (d,e,f) 𝑟0 = 0 mm (no hydrodynamic interactions). For each of the two

scenarios, we consider three values of inter-individual distances 𝑑: (a,d) 0.5 BL; (b,e) 1 BL; and (c,f)
2 BL. Other simulation parameters are mean values from Fig. 1: 𝜂 = 1.68 s−1, and 𝑣0 = 0.094 m s−1.

White regions identify stability boundaries, and black points are mean values from Fig. 1.
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