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Guidelines for choosing the neural-network hyperparameters

The Siamese neural-network (NN) models presented in this contribution should fulfill two tasks,

namely (i) capture the nonlinearity of the input features, and (ii) reduce the dimensionality of the pro-

cess at hand. The first task requires more layers and neurons for the middle layers, while the second task

suggests that the number of neurons should be decreased from the first layer to the last one, as shown

in the original VAMPnets (Mardt et al., 2018). To strike a balance between task (i) and the computa-

tional cost of the overall optimization, while avoiding potential overfitting, the size of the NN, or the

number of layers and neurons, cannot be blindly increased. In addition, the number of neurons in the

first, or input layer is determined by the number of candidate CVs. The number of neurons in the last

layer should match the number of eigenfunctions in the state-free reversible VAMPnets (SRVs). With

all these requirements in mind, the guidelines for configuring the layers and neurons are: (a) relate the

number of neurons of the first layer to the number of candidate CVs, (b) use two- or three-fold neurons

in the second layer, (c) ensure that the number of neurons in the last layer is the same as the number of

desired eigenfunctions, and (d) insert intermediate layers between the second and the last layers with

decreasing number of neurons.

When the biasing force �bias, is applied on the learned CV, / (s), it is propagated to the input features

s using the chain rule through �bias · ∇s/ (s), which requires / (s) to have a continuous derivative with

respect to s, which in turn, implies that the activation functions in / (s) should also have continuous

derivatives with respect to their input values. Bearing this requirement in mind, in the NANMA and

trialanine test cases, we have, respectively, selected the hyperbolic tangent (tanh) and the exponential

linear unit (ELU) as activation functions for all layers.
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Discretization issue of the space of the learned CVs in the trialanine case

As a variant of the adaptive biasing force (ABF) method (Darve and Pohorille, 2001; Comer et al.,

2015), the well-tempered meta-extended ABF (WTM-eABF) (Fu et al., 2019) relies on discretizing

the CV space to be sampled by multidimensional grids of finite bins, and building histograms to com-

pute the free-energy gradients. In general, if more bins are used for a given grid, the potential of mean

force (PMF) integrated from the free-energy gradients is expected to be more accurate, assuming the

calculation is converged, but it would also take a longer time to achieve an acceptably uniform sam-

pling. Conversely, if less bins are used, then the accuracy of the PMF is likely to diminish. In addition,

in WTM-eABF, the PMF could be also affected by the spring force constants utilized in the extended

Lagrangian dynamics, which are equal to :B)/f2, where f is commonly chosen as the width of the

bins (Fu et al., 2016).

The blue and red pathways in Figure 4H are, respectively, determined from the three-dimensional

free-energy landscapes along the learned CVs (b1, b2, b3), on the one hand, and along the known

reference CVs (q1, q2, q3), on the other hand. All q angle range from -180◦ to +180◦, and they are dis-

cretized in narrow bins of width equal to 5◦, guided by physical intuition, as isomerization is expected

to be a gradual process involving sequential changes in the dihedral angles. As a result, there are

72×72×72=373,248 bins for (q1, q2, q3). As for the NN-learned (b1, b2, b3), we evidently cannot rely

on our intuition, and must consequently discretize the learned conformational space into as many bins

as possible (150×150×150 bins), which, for a fixed simulation time–equal to that necessary to achieve

uniform sampling in the (q1, q2, q3) space, might lead to a relatively poor convergence, while requiring

different spring force constants for WTM-eABF. The likely suboptimal convergence of our simulation

can explain the slight deviation of the barriers between the two pathways (blue and red in Figure 4H),

although both of them visit A-M1-M3-B. It should, however, be emphasized that after reweighting the

trajectory from (b1, b2, b3) to (q1, q2, q3) in 72×72×72 bins, as shown in the green curve in Figure 4H,

the barriers are quantitively close to the reference (red).

Parameters and simulation details of the iterative learning in the NANMA and trialanine
cases

Tensorflow (Abadi et al., 2015) and NAMD (Phillips et al., 2020) with Colvars (Fiorin et al., 2013;

Chen et al., 2022) were used for training the neural networks and running simulations, respectively. The

parameters of the iterative learning, including the candidate CVs, time lags, network structures, nor-

malization factors, optimization, number of iterations, number of CVs used in each iteration, number

of CVs for the final free-energy calculations, simulation time during the different iterations, simulation

time of the final free-energy calculations, simulation timesteps, force fields, output frequencies of the

trajectories, and other parameters of WTM-eABF simulations used can be found in Table 1. The Adam

optimizer (Kingma and Ba, 2015) was used for all trainings. The datasets were splitted into training

sets and validation sets by a ratio of 9:1, and the trainings were stopped if the losses of validation sets

were not decreased further in 20 epochs (early stopping). The boundaries of the learned CVs were
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determined by transforming the training datasets into the values of the learned CVs, finding the min-

ima and maxima, and then extending the ranges by a factor of 10%. More specifically, the lower and

upper boundaries are /min − 0.05(/max − /min) and /max + 0.05(/max − /min), respectively. The spring

force constants of WTM-eABF simulations were determined by :B)/f2, where the f was calculated

the same as the widths of bins.
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Table 1. Paramters of iterative learning of the NANMA and the trialanine cases

Type of parameters Parameter NANMA Trialanine

Neural network

Candidate CVs
(input features)

sin(q), sin(k),
cos(q), cos(k)

sin(q1), sin(q2), sin(q3),
sin(k1), sin(k2), sin(k3),
cos(q1), cos(q2), cos(q3),
cos(k1), cos(k2), cos(k3)

Time lag 0.025 ps 0.25 ps

Network structure 4-12-10-8-6-4-2 12-32-24-16-8-3

Activation functions
linear-tanh-tanh-tanh-

tanh-tanh-linear
linear-tanh-elu-
elu-elu-linear

L2 normalization
factors 0.0005 for all layers 0.001 for all layers

Batch size 22,550 10,950

Epochs 2,000 1,000

Number of iterations 10 10

Number of CVs
used in iterations 1 2

MD simulation

Number of CVs
used for the final
PMF calculation

1 3

Simulation time
during iterations 100 ns 160 ns

Simulation time of
the last iteration 300 ns 310 ns

Timestep 0.5 fs 0.5 fs

Temperature 300 K 300 K

Force field
CHARMM22

(MacKerell et al., 1998)
AMBER ff14SB

(Maier et al., 2015)

Output frequency
of trajectories Every 10 steps Every 50 steps

Free enegy calculation
by WTM-eABF

Number of bins used
in PMF calculations

during iterative training
220 48,400 (220×220)

Number of bins of
the final PMF calculations 220

3,375,000
(150×150×150)

Height of initial
the Gaussian hill
of metadynamics

0.1 kcal/mol 0.1 kcal/mol

Standard deviation of
Gaussian hills

4 × bin widths
for each CV

4 × bin widths
for each CV

Frequency of depositing
new Gaussian hills Every 1000 steps Every 1000 steps
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Figure 1. Projections of the one-dimensional learned CV b from an unbiased trajectory when U = 1.0 by modified TAE (A),
SFA (B) and SRVs (C). The learned CV in all three methods evolves mainly along the x-axis.
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