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Supplementary Information10

Curating the set of high-quality Mg2+ sites11

The high-quality Mg2+ binding sites are clustered from the MgRNA benchmark set (Zheng et al.,12

2015). The original MgRNA benchmark set contains 15334 high-quality sites extracted from 48913

PDB files, among which, 14682 sites and 652 sites are collected from 294 ribosomal structures and14

195 non-ribosomal structures, respectively. In order to remove the redundancy in the MgRNA15

benchmark set, we cluster all the sites according to the structural similarity between their neigh-16

boring RNA segments (defined as the nucleotides within 10 Å of the site). We use 3 Å as the RMSD17

cutoff for the clustering, and only one representative ion site is selected for each cluster. This leads18

to a list of 1974 non-redundant high-quality ion binding sites. For each high-quality ion binding19

site, only top-7 predictions of the MgNet model are used to evaluate the performance (roughly20

the number of Mg2+ required to neutralize the negative charges of the nearby RNA segments).21

Details of the high-quality set can be found in Supplementary Dataset S1. We choose the MgRNA22

dataset because the RNA-bound Mg2+ sites in MgRNA benchmark set are comprehensively vali-23

dated and filtered, and are considered to be ‘reliable’ experimental data. We randomly group the24

(high-quality) dataset into five subsets, with the same total number of experimentally determined25

Mg2+ sites in each subset except for one subset with 394 total sites. For each ion binding site26

in the high-quality set, the space covered by the associated 3D images around the corresponding27

nucleotides are used by the MgNet model to predict ion distributions (Supplementary Fig. S2).28

Collecting data for motif identification29

RNA structures used in motif identification are collected from nucleic-acid database (NDB). Ini-30

tially, 980 crystallographically determined Mg2+-containing structures with resolution better than31

3 Å are downloaded. To avoid the redundancy in the dataset, we reduce the 980 Mg2+-containing32

structures to 350 crystal structures with 373 representative sequence/structure equivalence classes33

according to the representative set of RNA 3D structures (Leontis and Zirbel, 2012). Details of the34

high-quality set can be found in Supplementary Dataset S1.35

Defining 3D image36

We use 24 Å × 24 Å × 24 Å cubic boxes to capture the information from binding and non-37

binding sites. The information contained in these boxes serves as the input “images” for deep38

learning. Similar to a 2D image having three color channels (red, green, blue), our 3D images39

contain two feature channels, volume occupancy and partial charge (Supplementary Table S10).40

For each channel in an image, there are 48× 48× 48 voxels (pixels for 3D images), and each voxel41

has a volume of 0.5 Å × 0.5 Å × 0.5 Å. As a result, a 3D image is generated by two 48× 48× 4842

sized boxes stacked together.43

Generating 3D images for RNA44

For a given structure, each nucleotide is associated with an image. The midpoint between the45

backbone carbon atom C1′ and the base nitrogen atom connected to the C1′ atom is used as the46

origin for the corresponding image box. A local Cartesian coordinate system associated with each47

residue is set to avoid the need of image augmentation (i.e., 3D rotation transformation for each48

image). The space around the residue (within the image box) is discretized and filled with voxel49

values. The local coordinate system is set up according to the following steps. First, we select three50
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key atoms in a residue: O4′ and C1′ from the sugar ring and one nitrogen atom from the base (N151

from uracil and cytosine or N9 from adenine and guanine, see Supplementary Fig. S1a). Second,52

we calculate the vectors from C1′ to O4′ (CO) and from C1′ to the base nitrogen atom (CN). We53

select vectors CN and CN ×CO as the x- and the z-axis, respectively. The cross product of the54

z- and x-axes gives the y-axis.55

We fill images with voxel values according to the Van der Waals radius rvdw of each atom
type. For each voxel in a property channel, we go through all RNA atoms to calculate the voxel
occupancy. For example, we first calculate the distance rij between the RNA atom j and a given
a voxel i. Then, we use a step-like function

ni = fj × (1− e
−(

rvdw
rij

)
12

) (1)

to evaluate the contribution of RNA atom j to the voxel value, where fj represents the feature56

value associated with atom j. For the volume occupancy channel, fj is 1, whereas for the partial57

charge channel, fj is the partial charge of atom j. If more than one RNA atom contributes to the58

same voxel, we assign the average value from the contributors (Doerr et al., 2016).59

In total, we generate 15912 images for the 177 structures. In the training process, we remove60

images with less than 300 non-zero voxels from the training set.61

Labeling targets62

Because training MgNet is a supervised learning task, we need to label each image with its true ion63

distribution and use image-label pairs to guide the learning process. In reality, the precision of ion64

positions in RNA structures is limited due to various factors. For example, X-ray diffraction can65

only resolve ion positions up to a certain resolution. In order to take these factors into consideration,66

we employ the distribution function in Eq. 1 (with rvdw = 2.5Å for Mg2+) to account for the67

diffusiveness of the experimentally observed Mg2+ ions. The distribution of Mg2+ within each68

image box is used as the target label in MgNet training to compute the mean squared error (MSE)69

loss per voxel between the true and the predicted distributions. The minimization of the MSE loss70

guides the parameter training process in MgNet.71

Choosing hyperparameters for MgNet72

MgNet uses the two-channel 3D images of the RNA as the input and outputs a predicted Mg2+73

distribution for each image. The network has 22 convolutional layers. Each of the first 21 layers74

contains 16 3 × 3 × 3 filters, and the last layer has only one 3 × 3 × 3 filter. We use 16 filters in75

each layer to optimize the usage of the GPU memory and the computer time spent on the training.76

Following a previous study (Ioffe and Szegedy, 2015), we apply the batch normalization in each77

layer immediately after the convolutional operation and before the ‘Rectified Linear Unit’ (Nair78

and Hinton, 2010) activation. We also apply the batch normalization (Ioffe and Szegedy, 2015) for79

the last layer before the final activation, and replace the ‘Rectified Linear Unit’ (Nair and Hinton,80

2010) activation function with a sigmoidal activation function to keep the predicted voxel value81

in the range from 0 to 1. Based on the plain network, we insert residual shortcut connections for82

every block with two hidden layers. The shortcut takes an identical input from a previous block83

and maps the identity shortcut right before the activation of the second hidden layer within the84

block (Supplementary Fig. S3 and Fig. S4). We initialize the weights (He et al., 2015, 2016) and85

train all residual nets from scratch. To keep the input and output image sizes identical, we do not86

use any downsampling methods during the training.87
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The only data preprocessing used is the subtraction of the voxel mean from each image. For a88

given channel, the voxel mean is calculated by averaging the training set voxel values for all possible89

voxel positions in the corresponding channel. To center the data, we subtract the voxel mean from90

each voxel value. we perform this preprocessing for the training, validation, and test sets.91

For the network optimizer (Kingma and Ba, 2017), we use default parameters provided by
PyTorch (Paszke et al., 2019) for momentum scheduling (β1 = 0.99, β2 = 0.999). A mini-batch size
of 32 is used for training. The learning rate is initialized at 0.01 and divided by 10 at each plateau
in training accuracy. The models is trained for up to 250 epochs. Our goal during the training is
to minimize the weighted MSE loss function, Lw, which is calculated from the following equation

Lw =
N∑

n=1

48∑
i,j,k=1

wijk
(Pn(i, j, k)−Gn(i, j, k))

2

483N
(2)

where N is the number of images, i, j, k is the voxel index, and Pn(i, j, k) and Gn(i, j, k) are the
predicted and ground-truth ion distributions for the nth image, respectively. Further, the weights
are defined as

wijk =

{
1 Gn(i, j, k) = 0

30 ·Gn(i, j, k) Gn(i, j, k) ̸= 0

The above loss function gives the MSE between the predicted distributions and ground-truth dis-92

tributions for all the voxels. Because the space is sparsely occupied by Mg2+, the data is highly93

imbalanced. The weighted loss function balances the learning process by increasing the penalty of94

a false negative prediction for positions that are truthfully occupied by Mg2+.95

Training and evaluating MgNet96

To perform an unbiased evaluation for MgNet, we adopt a five-fold cross-validation procedure. For97

each fold, we train MgNet for a total of 250 epochs with each epoch of training taking around98

5 minutes. The training is conducted on 2 GTX 1080 Ti NVIDIA GPUs and one AMD Ryzen99

Threadripper 1950X 3.4 GHz 16-Core Processor. The loss quickly reaches a plateau and we choose100

the model at epoch 40 as the final model.101

Clustering to predict Mg2+ binding sites102

For an RNA with N nucleotides, we first identify the connected regions from the top-50N predicted103

high-probability voxels around the RNA using the DBSCAN (Ester et al., 1996) clustering method.104

Within each high-probability region, we then use k-means clustering to generate K clusters, where105

K is determined from the ratio between the volume (v) of the high-density area and preset cluster106

size (m). We choose the representative points of the K clusters as predicted ion sites. These107

sites are combined and ranked based on the sum of the probabilities of all the voxels within the108

corresponding cluster. By changing the preset cluster size (m), we can adjust the number of clusters109

(K) within each high-probability region. We obtain the default clustering settings in MgNet by110

optimizing the performance on the validation sets through refining the preset cluster size (m=380).111

Defining the evaluation metric112

We use RMSD to evaluate the performance of MgNet for an individual test structure. The overall
performance of the model for a large number of test structures is evaluated by the true positive rate
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(TPR) and the positive predictive value (PPV). TPR and PPV are calculated from the following
equations:

TPR =
TP

P
=

TP

TP + FN
(3)

PPV =
TP

TP + FP
(4)

Here, P is the number of positive (experimentally observed) cases, TP (true positive) is the number113

of predicted Mg2+ that resides within a 3 Å sphere around an experimentally observed Mg2+,114

and FP (false positive) is the number of predicted Mg2+ that falls outside the 3 Å range from115

experimentally observed Mg2+ ions.116

Calculating radial frequency distribution117

The radial frequency distribution is generated from the following steps. First, we find all the bound
Mg2+ ions in the training set. Second, for each Mg2+ in the training set, the space within 9 Å
around the ion is discretized into 18 spherical shells, each having a shell thickness of 0.5 Å. For
each Mg2+, we locate all the RNA atoms within the 9 Å sphere and bin them in the shells. Then,
according to the different types of coordinating atoms, we count the frequency of each coordinating
atom type in the spherical shells for all the Mg2+ ions and compute the radial frequency distribution
for every coordinating RNA atom type. The radial frequency in each spherical shell (or the distance
bin) is normalized by the volume of the corresponding shell:

ft(i) =
nt(i)

v(i)
(5)

where nt(i) is the number of the type-t RNA atoms appearing in the ith shell for the bound Mg2+,118

and ft(i) is the frequency normalized by the corresponding shell volume v(i).119

The representative atoms are chosen by first ranking the atoms by the sum of the nt(i) (the120

number of the type-t RNA atoms appearing in the ith shell) within 5 Å (the outer-sphere coordi-121

nation distance) for all of atom type t and then selecting the top-ranked atom for each atom type.122

To differentiate the effects of the different types of atoms, we define the radial distribution of the123

saliency value ht(i) as ht(i) = st(i)/nt(i), where st(i) is the sum of all the saliency values for the124

type-t RNA atom in the ith shell from the ion, and the denominator nt(i) is the number of the125

type-t RNA atoms appearing in the ith shell. Physically, the saliency values ht(i) indicates the126

relative sensitivity of ion binding site to the RNA atom types.127
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Supplementary figures and tables128

0.0

0.2

0.4

0.6

0.8

1.0

Shortcut 1 Shortcuts Shortcut 10
Image

Conv Layer 1 Block 1 Blocks Block 10 Conv Layer 22

Predicted Distribution

Filters

C

BA
Partial Charge

2
4
 Å

2
4
 Å

Adenine

N9

C1'

O4'

N

NN

N

NH2

O

OHOH

OP-O

O-

O

NH

O

ON

O

OHOH

OP-O

O-

O

Uracil

O4'

C1'

N1

Guanine

NH

N

N

O

NH2
N

O

OHOH

OP-O

O

O-

O4'

C1'

N9

Cytosine

N

NH2

ON

O

OHOH

OP-O

O-

O
O4'

C1'

N1

3D Image

Figure S1: Overview of the MgNet. (a) To configure the 3D images for Mg2+ ion binding envi-
ronment, we set up a local Cartesian coordinate system around each nucleotide based on three key
atoms (shown in red) in the sugar ring and bases. The origin of the local coordinate system is
set to the midpoint between the carbon atom (C1’) and the nitrogen atom (N1 for pyrimidine or
N9 for purine), where the vectors formed by C1’ and an oxygen atom (O4’), and by C1’ and the
nitrogen atom (N1 or N9) are used to define the x-y plane of the system. (b) Each 3D image is
taken from a 24 Å x 24 Å x 24 Å cubic box centered at a given nucleotide and is used to capture the
information for the binding and non-binding sites. The cubic box is shown with yellow frames. The
local Cartesian coordinate system (the orientation of the cubic box) is determined by the key atoms
in the corresponding nucleotide. Two feature channels (partial charge and volume occupancy) are
used to extract the relevant information from the image. (c) The MgNet is drawn in a 2D diagram
for a better illustration, where all 3D images (3D cubic grids) are shown as 2D squares. From left to
right, an image with two feature channels is fed into the MgNet, and information is then processed
by different layers of filters and connected through various shortcuts. The final prediction is an ion
density (probability) distribution map.
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Table S1: PDBs used in five-fold cross-validation evaluation

cv1

1b23 1hq1 2a43 2g91 2oiu 301d 3cul 3l3c 3q51 3tzr
4l81 4qlm 4yco 5ew7 5ns4 5vjb 6b14 6cu1 1drz 1zz5
2cv1 2nok 2qus 354d 3ftm 3mei 3ssf 437d 4m30 4rge
5bjo 5ktj 5tpy 5wti 6c8d 6dta

cv2

1duh 1ik5 1kxk 1nuj 2ann 2hw8 2yie 2zzn 3egz 3jxq
3loa 3ski 3v7e 4bwm 4nya 4p95 5dh6 5m0i 1feu 1j1u
1mms 1y26 2b8s 2oe5 2zzm 3cr1 3eph 3knc 3mxh 3t1y
430d 4g6r 4oji 4yb0 5lqt 5xus

cv3

1jid 2nug 2qbz 3f4h 3hhn 3nd4 3oin 3u56 4frg 4m4o
4pdq 4xco 5d8h 5e54 5kpy 5ndh 5v0k 6dme 2fmt 2pjp
2val 3fs0 3ivn 3nkb 3td0 4en5 4ghl 4pcj 4pqv 4xw7
5ddp 5fj0 5mga 5u3g 5xtm

cv4

1dfu 1f27 1hc8 1lnt 1mzp 1pjo 1yls 2ply 3cgs 3gvn
3la5 4oog 4znp 5btp 5lyv 5une 5y85 6dnr 1evv 1ffy
1hr2 1mji 1ntb 1y95 2g3s 364d 3d2x 3hax 3q3z 4z4f
5aox 5c9h 5t3k 5voe 6cc3

cv5

1d4r 1jzv 1tra 2ao5 2q1r 2tra 3f2q 3oxd 4cs1 4jrc
4lx6 4tzx 5btm 5dar 5fj1 5u0q 6aso 6db9 1dk1 1l9a
1xjr 2fqn 2quw 2z75 3gx3 3zgz 4e8n 4k27 4rwn 4wkj
5ckk 5dhc 5nzd 5v2h 6c8o

7



Table S2: TPR and PPV of the five-fold cross-validation test

cv1 cv2 cv3 cv4 cv5 total

TPR 50.43% 49.58% 43.46% 50.19% 40.91% 46.91%
PPV 31.81% 36.53% 39.81% 38.44% 31.12% 35.54%

The table shows the TPR and PPV of the MgNet model in the five-fold cross-validation test. The
column under the total is the averaged results of the five-fold cross-validation.
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Figure S2: The neighboring environment of an experimentally observed Mg2+ site (green sphere)
in MgRNA benchmark set. Nearby experimentally observed Mg2+ sites other than the benchmark
sites (green sphere) are shown as magenta spheres. Only 3D images associated with nearby nu-
cleotides (shown in blue) within 10 Å of the MgRNA benchmark Mg2+ sites are used by MgNet
to predict ion distributions. Although the remaining residues (shown in grey, including RNA and
protein segments) do not have associated images, they are still covered by various generated images
centered at nearby nucleotides (shown in blue).
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Table S3: Success rate of MgNet model on the high-quality dataset

cv1 cv2 cv3 cv4 cv5 total

TPR
51.90% 47.85% 49.62% 45.57% 49.49% 48.89%

(205/395) (189/395) (196/395) (180/395) (195/394) (965/1974)

The TPR (i.e., success rate) of five-fold MgNet models on the high-quality dataset. Columns cv1
to cv5 show the predictions made by the corresponding trained MgNet models. Only predicted
sites with RMSD less than 3 Å are considered as true positive ones. The column under the total
is the averaged results of the five-fold cross-validation. The numbers in parenthesis represent the
number of the correct predictions and the number of the experimental sites, respectively.
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Table S4: Comparison between the performance of MetalionRNA and of MgNet for the 58 nt
fragment of 23S rRNA structure (PDB code: 1HC8)

Mg2+ MetalionRNA(29) MgNet(9) *MgNet(12)
(res no.) Å(rank) Å(rank) Å(rank)

1159 0.8 (1) 0.8 (8) 0.8 (7)
1160 1.9 (6) - 0.6 (12)
1161 2.9 (29) 2.8 (7) 2.3 (8)
1163 0.6 (3) 1.8 (5) 1.3 (4)
1164 1.4 (2) 2.3 (3) 1.4 (5)
1167 3.8 (10) 0.5 (1) 0.5 (3)
1172 3.2 (13) 1.6 (9) 1.8 (9)

RMSD values and ranks of the predictions of MetalionRNA and MgNet for Mg2+ ions in the 58
nt fragment of 23S rRNA structure (PDB code: 1HC8). The leftmost column lists the Mg2+

identifiers (residue number) as labeled in the PDB file. From the second column to the rightmost
column, we summarize the predictions made by MetalionRNA, MgNet with default cluster setting,
and MgNet with an adjusted cluster setting, respectively (see Supplementary Information). The
7 experimentally determined ion sites are successfully predicted by MetalionRNA, MgNet, and
*MgNet within the top-29, 9, and 12 ranked hits, respectively. For each entry, the number in
parenthesis indicates the rank of the corresponding prediction. Lower ranked sites correspond
to predicted sites with lower confidence. A dashed line means there is no predicted ion for the
corresponding experimental binding site. Among the top-9 predictions from MgNet, six out of the
seven experimentally observed Mg2+ ions are predicted with an accuracy of 0.5-2.8 Å. The remaining
experimental ion is found in between two experimentally determined ions (residue numbers 1161
and 1160) with a distance of 2.8 Å and 3.6 Å to the ions of residue numbers 1161 and 1160,
respectively. The result suggests that these two Mg2+ sites may share a mutual binding area.
As shown in the *MgNet column, the top-12 predicted Mg2+ ion coordinates give all the seven
experimentally determined ions with an accuracy of 0.5-2.3 Å.
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Table S5: Comparison between the molecular dynamics (MD) simulation-based method and MgNet
for seven test structures

PDB Ion Mg2+CI Mg2+PS MgNet

1D4R
MG-90 1.0 ± 0.5 1.1 ± 0.5 2.2 ± 0.6
MG-91 5.0 ± 0.7 4.4 ± 0.7 3.7 ± 0.8

2MTK

MG-48 7.4 ± 3.2 5.8 ± 1.9 4.8 ± 0.5
MG-49 3.9 ± 0.9 2.9 ± 1.6 3.6 ± 0.5
MG-50 6.7 ± 3.0 5.7 ± 2.3 1.6 ± 0.2
MG-51 3.2 ± 0.8 3.5 ± 0.4 7.1 ± 8.1
MG-52 3.6 ± 0.5 3.8 ± 2.4 7.7 ± 0.4
MG-53 2.1 ± 0.4 2.3 ± 1.1 2.1 ± 0.7

2QEK MG-49 2.5 ± 0.2 2.5 ± 1.3 6.3 ± 4.4

4FRG

MG-179 2.4 ± 0.7 4.4 ± 0.8 1.2 ± 0.6
MG-180 2.4 ± 0.8 5.3 ± 0.4 1.5 ± 0.4
MG-181 2.8 ± 0.5 1.4 ± 0.5 18.8 ± 0.2
MG-182 7.6 ± 0.5 7.0 ± 0.6 2.0 ± 0.1
MG-183 3.7 ± 1.5 4.7 ± 2.9 1.6 ± 0.8
MG-184 1.1 ± 0.3 2.0 ± 1.5 2.1 ± 0.9
MG-185 3.7 ± 1.3 5.9 ± 1.4 4.8 ± 5.5

4JF2

MG-94 2.2 ± 1.1 2.7 ± 1.0 0.7 ± 0.2
MG-95 3.2 ± 0.6 4.6 ± 0.7 4.0 ± 6.7
MG-96 2.5 ± 0.8 2.9 ± 0.9 0.5 ± 0.1
MG-97 18.3 ± 2.7 20.6 ± 0.8 0.6 ± 0.2

4KQY
MG-121 1.8 ± 0.4 3.4 ± 0.9 1.3 ± 0.4
MG-122 1.8 ± 0.5 4.2 ± 2.0 6.4 ± 1.4

4P5J
MG-85 1.1 ± 0.7 1.8 ± 0.2 1.5 ± 0.4
MG-86 2.5 ± 0.5 3.5 ± 2.1 1.3 ± 0.1

RMSD values and the standard deviations between the predicted ion sites and the corresponding
experimental ion sites, measured in angstrom. The PDB code and the corresponding experimental
Mg2+ ions are listed in the first two columns. Column Mg2+CI and Mg2+PS show the average RMSD
values and the standard deviations of MD simulation-based method. The top-50 predicted sites
from the MD simulation-based method are used. Column MgNet shows the averaged RMSD values
over the predictions of the five trained MgNet models. We note that MD simulation-based method
do not provide the rank order for the predicted ions, thus we only list the average RMSD and the
standard deviation for each Mg2+. Details of the predictions of MgNet model can also be found in
Supplementary Table S6 and Supplementary Table S7.
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Table S6: RMSD table of the MD simulation-based method and MgNet on seven test structures

PDB Ion Mg2+CI Mg2+PS cv1 cv2 cv3 cv4 cv5

1D4R
MG-90 1.0 ± 0.5 1.1 ± 0.5 2.9 (1) 2.4 (1) 1.6 (1) 1.6 (2) 2.3 (1)
MG-91 5.0 ± 0.7 4.4 ± 0.7 2.8 (4) 5.0 (2) 3.4 (2) 3.6 (1) 3.5 (2)

2MTK

MG-48 7.4 ± 3.2 5.8 ± 1.9 4.9 (1) 5.2 (7) 4.7 (7) 3.9 (2) 5.2 (5)
MG-49 3.9 ± 0.9 2.9 ± 1.6 3.1 (6) 4.0 (5) 4.1 (8) 3.7 (7) 3.0 (8)
MG-50 6.7 ± 3.0 5.7 ± 2.3 1.3 (2) 1.5 (1) 1.8 (4) 1.8 (3) 1.5 (2)
MG-51 3.2 ± 0.8 3.5 ± 0.4 19.5 (4) 1.5 (8) 11.5 (3) 1.2 (1) 2.0 (9)
MG-52 3.6 ± 0.5 3.8 ± 2.4 7.6 (3) 8.0 (3) 7.6 (1) 8.2 (5) 7.2 (6)
MG-53 2.1 ± 0.4 2.3 ± 1.1 2.0 (7) 1.6 (2) 3.2 (9) 1.5 (4) 2.0 (1)

2QEK MG-49 2.5 ± 0.2 2.5 ± 1.3 1.5 (4) 1.6 (6) 9.8 (1) 8.9 (4) 9.9 (1)

4FRG

MG-179 2.4 ± 0.7 4.4 ± 0.8 1.5 (2) 0.9 (2) 1.8 (1) 1.5 (1) 0.4 (6)
MG-180 2.4 ± 0.8 5.3 ± 0.4 0.9 (4) 1.7 (8) 1.4 (8) 1.6 (5) 1.9 (5)
MG-181 2.8 ± 0.5 1.4 ± 0.5 18.6 (5) 18.9 (11) - - 18.8 (10)
MG-182 7.6 ± 0.5 7.0 ± 0.6 1.8 (10) 2.0 (7) 1.9 (11) 2.1 (4) -
MG-183 3.7 ± 1.5 4.7 ± 2.9 2.2 (1) 2.5 (1) 0.7 (5) 2.0 (2) 0.8 (2)
MG-184 1.1 ± 0.3 2.0 ± 1.5 1.2 (3) 3.4 (3) 2.1 (10) 1.3 (6) 2.6 (1)
MG-185 3.7 ± 1.3 5.9 ± 1.4 1.1 (9) 0.8 (10) 7.5 (6) 13.3 (7) 1.4 (3)

4JF2

MG-94 2.2 ± 1.1 2.7 ± 1.0 0.4 (3) 0.7 (1) 0.8 (4) 0.9 (6) 0.5 (1)
MG-95 3.2 ± 0.6 4.6 ± 0.7 16.0 (5) 1.1 (8) 1.1 (2) 1.0 (4) 1.0 (4)
MG-96 2.5 ± 0.8 2.9 ± 0.9 0.4 (7) 0.6 (4) 0.6 (3) 0.5 (7) 0.5 (5)
MG-97 18.3 ± 2.7 20.6 ± 0.8 0.7 (2) 0.7 (2) 0.9 (1) 0.6 (1) 0.3 (3)

4KQY
MG-121 1.8 ± 0.4 3.4 ± 0.9 1.9 (1) 1.3 (3) 1.2 (5) 0.7 (1) 1.4 (1)
MG-122 1.8 ± 0.5 4.2 ± 2.0 7.1 (2) 5.4 (8) 5.7 (8) 5.3 (6) 8.5 (7)

4P5J
MG-85 1.1 ± 0.7 1.8 ± 0.2 1.6 (5) 1.1 (1) 1.4 (6) 1.2 (2) 2.0 (1)
MG-86 2.5 ± 0.5 3.5 ± 2.1 1.3 (6) 1.3 (2) 1.4 (2) 1.3 (1) 1.2 (3)

Column Mg2+CI and Mg2+PS are the average RMSD values and standard deviations of MD method
between experimental and predicted binding sites during the production phase. Top 50 predicted
sites were used in MD method. Columns cv1 to cv5 are the predictions made by MgNet with
default clustering settings, shown in RMSD values with ranks in parentheses. In MgNet model,
only predicted sites with RMSD less than 20 Å are listed in the table, experimental ions with no
predicted sites within 20 Å are labeled with dash.
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Table S7: TPR and PPV of MD simulation-based method and MgNet on seven test structures

Mg2+CI Mg2+PS cv1 cv2 cv3 cv4 cv5

TPR - - 70.83% 70.83% 58.33% 66.67% 70.83%
PPV - - 31.48% 26.98% 25.93% 29.63% 32.08%

TPR* 54.17% 37.50% 87.50% 87.50% 87.50% 91.67% 91.67%
PPV* 3.71% 2.57% 6.00% 6.00% 6.00% 6.29% 6.29%

The TPR and PPV for both MD simulations and MgNet. Column Mg2+CI and Mg2+PS are the results
of MD simulations with the different ion conditions. Columns cv1 to cv5 are the predictions made
by the corresponding trained MgNet models. Only predicted sites with RMSD less than 3 Å are
considered as true positive ones. For MD simulations, predictions were made by using the top 50
predicted sites. Since the default clustering settings of MgNet tend to give fewer predictions than
the MD simulations (i.e., 50 sites), we provide MgNet results with two different settings. One uses
default clustering settings and the other one uses the same number of predicted binding sites for
each structure as the MD simulations (i.e., 350 predicted sites for seven structures). The results of
these two settings are shown as TPR and PPV without and with asterisk, respectively).
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Table S8: Comparison between the Brownian dynamics (BD) simulation-based method and MgNet
for three test structures

PDB Ion BD cv1 cv2 cv3 cv4 cv5

354D

A-203 1.8 0.9 (2) 1.1 (2) 1.6 (6) 1.2 (7) 1.0 (3)
B-200 0.7 0.4 (1) 0.5 (3) 0.5 (2) 0.9 (1) 1.0 (2)
B-201 1.3 1.2 (4) 1.6 (5) 1.3 (4) 1.0 (5) 0.9 (1)
B-202 1.4 1.1 (5) 1.1 (1) 1.7 (3) 0.8 (4) 1.2 (6)
B-204 2.7 1.4 (7) 1.6 (6) 5.8 (1) 1.6 (6) 6.4 (4)

3TRA A-76 ∼5.0 - - - 4.3 (6) -

4TRA

A-77 2.6 2.0 (4) 2.5 (6) 2.1 (7) 2.4 (4) 2.2 (4)
A-78 2.1 1.0 (5) 0.7 (2) 0.9 (4) 0.5 (5) 1.4 (1)
A-79 2.2 2.1 (7) 1.2 (3) 1.0 (5) 1.8 (6) 1.9 (5)
A-80 0.3 6.2 (6) - - 6.1 (7) 6.0 (6)

RMSD values between the predicted ion sites and the experimental ion sites, measured in angstrom.
The PDB codes and the corresponding experimental Mg2+ ions are listed in the first two columns.
From the simulation of many positively charged spheres under the influence of both random Brow-
nian motion and the electrostatic field of the RNA, the binding sites are identified as the regions
where a significant number of the test charges are trapped. The results of the trained MgNet
models are listed from columns cv1 to cv5 with the ranks shown in parentheses. Experimentally
determined ion sites that theoretical models fail to predict within 10 Å are labeled with a dash.
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Table S9: Comparison between the performance of MgNet model for the original RNAs and for
RNAs with the coordinating atoms removed

Mg2+ RNA RNAR

2YIE-Z1116 1/1 0/1
3HAX-E200 1/1 1/1
3Q3Z-V85 1/1 0/1
2Z75-B301 1/1 0/1
3DD2-B1000 5/5 2/5
1VQ8-08004 5/5 0/5
4TP8-A1601 3/5 0/5
2QBA-B3321 5/5 0/5

The number of successful MgNet predictions for each Mg2+ binding case. Predictions are made by
five previously trained models obtained through five-fold cross-validation. However, for a binding
case included in the cross-validation dataset (top-four cases), only the model trained without the
case is used to make predictions so the test set is not included in the training set. The purpose
of this test is to show the importance of the coordinating atoms – the removal or change of the
coordinating atoms would result in incorrect binding sites. The first column shows the PDB code
and the Mg2+ identifier for the position of the bound ion. The column labeled with RNA and
RNAR shows the result for the original RNA and the RNA with coordinating atoms removed,
respectively. The results are shown in the n/N format, where n and N represent the numbers of
the MgNet model with successful predictions and of all the trained MgNet models, respectively. A
prediction is successful if the RMSD between the predicted ion site and the experimentally observed
site is within 3 Å.
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Table S10: Feature channels used for the 3D descriptor

Feature Rule

volume occupancy all the RNA atom types (not including Mg2+)
partial charge partial charge values for all the RNA atom types

(not including Mg2+)
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conv layer

X

ReLU
XF(X)

F(X)+X

Batch Normalization

conv layer

Batch Normalization

ReLU

Figure S3: Block structure with a residual shortcut. Figure shows the entire block structure,
where X is the input of this block (i.e., X is the output from the previous layer) and ReLU is the
Rectified Linear Unit. Within this block, input X passes through two convolutional layers. The
whole transformation in this block can be viewed as a function F, which maps input X to output
F(X), and an identity-mapping shortcut on the right-hand side adds X directly to the processed
output F(X).
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Image

3x3x3 conv, 16

sigmoid

3x3x3 conv, 16

3x3x3 conv, 16

3x3x3 conv, 16

3x3x3 conv, 16

3x3x3 conv, 1

Predicted Density

Shortcut 1

Shortcuts

Shortcut 10

Block 1

Blocks

Block 10

Figure S4: MgNet model. Ten blocks are stacked sequentially to make a 22-layer CNN. All convo-
lutional layers have the same number of filters except for the last layer, which only has one filter.
A sigmoidal activation function is applied to confine the predicted ion density within the 0 ∼ 1
range.
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Table S11: Details of MgNet Architecture

Block Layer Output Size Filter size Filter number Padding

first conv conv1 48× 48× 48 3× 3× 3 16 1

block1
conv2 48× 48× 48 3× 3× 3 16 1
conv3 48× 48× 48 3× 3× 3 16 1

· · · · · · · · · · · · · · · · · ·

block10
conv20 48× 48× 48 3× 3× 3 16 1
conv21 48× 48× 48 3× 3× 3 16 1

last conv conv22 48× 48× 48 3× 3× 3 1 0

Architectures of MgNet. Each building block is shown with two convolutional layers together
without line separation. No downsampling is performed in this network, so the stride has size equal
to 1 for all layers.

Dataset S1: SI sheet.xlsx (a separate file)129

Contains information about the datasets, cross-validation, comparisons with other methods, and130

the identified binding motifs.131
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