
Supplement 
 
Deriving a Jacobian matrix to study invertase-catalysed sucrose hydrolysis 
Due to its central role in sugar metabolism, a quantitative understanding of invertase kinetics 

is crucial for analysis and interpretation of photosynthesis and plant carbohydrate 

metabolism. Also, sugar signalling, plant fertility and fitness are significantly affected and 

regulated by invertases which emphasises even more their essential role in plants  (Wan et 

al., 2018). Yet, as soon as enzyme kinetics recorded in vitro are applied to explain in vivo 

metabolic regulation and to simulate metabolic fluxes, further information about involved 

metabolite pools, compartments and enzyme regulation is needed in order to estimate 

dynamics of substrate (here: sucrose) and product (here: hexose) concentrations. If metabolite 

concentrations and kinetic parameters are known, the system of ODEs which describes 

dynamics of sucrose and hexose concentrations can be numerically solved, i.e., numerically 

integrated. Thus, to estimate the impact of product inhibition of invertases, dynamics of 

hexoses need to be estimated which depend on invertase activity (input) and output reactions 

which consume or interconvert glucose and fructose (here: rout,Glc and rout,Frc). A physiologically 

important output reaction, which interconverts hexoses, is their phosphorylation, catalysed 

by hexokinases (Granot et al., 2014). To prevent the depletion of sucrose, an input function 

needs to be defined which supplies the system with sucrose molecules (rin). In plant 

metabolism, sucrose phosphate synthase (SPS) catalyses and regulates sucrose biosynthesis 

in the cytosol together with fructose-1,6-bisphosphatase (FBPase) (Doehlert & Huber, 1983; 

Stitt et al., 1983; Volkert et al., 2014). Here, the input reaction rate rin was defined to be 

constant without explicitly modelling SPS or FBPase kinetics (Eq. S1). Invertase reaction and 

hexose output followed Michaelis-Menten kinetics considering product inhibition of invertase 

(Eq. S2; Kitashova et al., 2021) while output was assumed not to be inhibited (Eqs. S3, S4).  

 

𝑟𝑖𝑛 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

(Eq. S1) 

 

𝑟𝐼𝑛𝑣 =
𝑉𝑚𝑎𝑥,𝑖𝑛𝑣 𝑆𝑢𝑐

(𝐾𝑀,𝑆𝑢𝑐 (1 +
𝐹𝑟𝑐

𝐾𝑖,𝐹𝑟𝑐
⁄ ) + 𝑆𝑢𝑐) (1 + 𝐺𝑙𝑐 𝐾𝑖,𝐺𝑙𝑐

⁄ )
 

(Eq. S2) 

 



𝑟𝑜𝑢𝑡,𝐺𝑙𝑐 =
𝑉𝑚𝑎𝑥,𝑜𝑢𝑡,𝐺𝑙𝑐  𝐺𝑙𝑐

(𝐾𝑀,𝑜𝑢𝑡,𝐺𝑙𝑐 + 𝐺𝑙𝑐)
 

(Eq. S3) 

 

𝑟𝑜𝑢𝑡,𝐹𝑟𝑐 =
𝑉𝑚𝑎𝑥,𝑜𝑢𝑡,𝐹𝑟𝑐  𝐹𝑟𝑐

(𝐾𝑀,𝑜𝑢𝑡,𝐹𝑟𝑐 + 𝐹𝑟𝑐)
 

(Eq. S4) 

 

 

Parameters Vmax,… are the maximum velocities of enzyme reactions, i.e., reaction rates under 

substrate saturation. Michaelis constants KM,… are affinities of enzymes for their substrates 

and represent the metabolite concentration at r = Vmax/2. The inhibitory constants Ki,… indicate 

inhibitor concentrations which are needed to reduce enzyme velocity to half maximum. To 

study complex system properties like stabilization after perturbation, biochemical systems are 

typically linearised and considered near a steady state. Yet, due to strong external and internal 

dynamics, plant metabolism can hardly be described by steady state assumptions, which is 

dM(t)/dt = 0 where M(t) represents a vector of metabolite concentrations and 0 is the zero 

vector. In the given example of sucrose hydrolysis within plant cells, both substrate and 

product molecules may show significant dynamics within a diurnal cycle (Sulpice et al., 2014). 

Although this clearly constrains the interpretation of findings made by assumptions of a steady 

state, it simplifies theoretical and computational analysis of metabolic systems. 

Additionally, analytical solutions of enzymatic reaction systems can be obtained using the 

assumption that velocity of an enzymatic reaction linearly depends on substrate 

concentrations (Heinrich & Rapoport, 1974). In contrast, solving nonlinear metabolic systems 

analytically is hardly possible. Taylor expansion of temporal changes of deviations from a 

steady state leads to the Jacobian matrix of a reaction system (Klipp et al., 2016). In context 

of metabolic networks, the Jacobian matrix describes elasticities of metabolic functions 

towards dynamics of metabolite concentrations. For the given reaction system (Eq. 2, main 

text), the Jacobian matrix reads (Eq. S5): 

 



𝑱 = (

𝑗11 𝑗12 𝑗13
𝑗21 𝑗22 𝑗23
𝑗31 𝑗32 𝑗33
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𝜕(𝑓(𝐺𝑙𝑐))
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𝜕(𝑓(𝐹𝑟𝑐))
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=

(

 
 
 
 

𝜕(𝑟𝑖𝑛 − 𝑟𝑖𝑛𝑣)

𝜕(𝑆𝑢𝑐)

𝜕(𝑟𝑖𝑛 − 𝑟𝑖𝑛𝑣)

𝜕(𝐺𝑙𝑐)

𝜕(𝑟𝑖𝑛 − 𝑟𝑖𝑛𝑣)

𝜕(𝐹𝑟𝑐)

𝜕(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐺𝑙𝑐)

𝜕(𝑆𝑢𝑐)

𝜕(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐺𝑙𝑐)

𝜕(𝐺𝑙𝑐)

𝜕(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐺𝑙𝑐)

𝜕(𝐹𝑟𝑐)

𝜕(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐹𝑟𝑐)

𝜕(𝑆𝑢𝑐)

𝜕(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐹𝑟𝑐)

𝜕(𝐺𝑙𝑐)

𝜕(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐹𝑟𝑐)

𝜕(𝐹𝑟𝑐) )

 
 
 
 

      

(Eq. S5) 

 

with diagonal entries (Eqs. S6-S8), 

 

𝜕(𝑟𝑖𝑛 − 𝑟𝑖𝑛𝑣)

𝜕(𝑆𝑢𝑐)
= −

𝐾𝑀,𝑆𝑢𝑐𝐾𝑖,𝐺𝑙𝑐𝐾𝑖,𝐹𝑟𝑐𝑉𝑚𝑎𝑥,𝑖𝑛𝑣(𝐹𝑟𝑐 + 𝐾𝑖,𝐹𝑟𝑐)

(𝐺𝑙𝑐 + 𝐾𝑖,𝐺𝑙𝑐)(𝐾𝑀,𝑆𝑢𝑐  𝐹𝑟𝑐 + 𝐾𝑀,𝑆𝑢𝑐  𝐾𝑖,𝐹𝑟𝑐 + 𝐾𝑖,𝐹𝑟𝑐𝑆𝑢𝑐)
2   

(Eq. S6) 

 

𝜕(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐺𝑙𝑐)

𝜕(𝐺𝑙𝑐)
= −

𝐾𝑖,𝐹𝑟𝑐𝐾𝑖,𝐺𝑙𝑐𝑉𝑚𝑎𝑥,𝑖𝑛𝑣 𝑆𝑢𝑐

(𝐺𝑙𝑐 + 𝐾𝑖,𝐺𝑙𝑐)
2
(𝐾𝑀,𝑆𝑢𝑐  𝐹𝑟𝑐 + 𝐾𝑀,𝑆𝑢𝑐  𝐾𝑖,𝐹𝑟𝑐 + 𝐾𝑖,𝐹𝑟𝑐  𝑆𝑢𝑐)

−
𝑉𝑚𝑎𝑥,𝑜𝑢𝑡,𝐺𝑙𝑐𝐾𝑀,𝑜𝑢𝑡,𝐺𝑙𝑐

(𝐾𝑀,𝑜𝑢𝑡,𝐺𝑙𝑐 + 𝐺𝑙𝑐)
2  

(Eq. S7) 

 

𝜕(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐹𝑟𝑐)

𝜕(𝐹𝑟𝑐)
= −

𝐾𝑀,𝑆𝑢𝑐  𝐾𝑖,𝐹𝑟𝑐𝐾𝑖,𝐺𝑙𝑐𝑉𝑚𝑎𝑥,𝑖𝑛𝑣 𝑆𝑢𝑐

(𝐺𝑙𝑐 + 𝐾𝑖,𝐺𝑙𝑐)(𝐾𝑀,𝑆𝑢𝑐 𝐹𝑟𝑐 + 𝐾𝑀,𝑆𝑢𝑐𝐾𝑖,𝐹𝑟𝑐 + 𝐾𝑖,𝐹𝑟𝑐𝑆𝑢𝑐)
2 −

𝑉𝑚𝑎𝑥,𝑜𝑢𝑡,𝐹𝑟𝑐𝐾𝑀,𝑜𝑢𝑡,𝐹𝑟𝑐

(𝐾𝑀,𝑜𝑢𝑡,𝐹𝑟𝑐 + 𝐹𝑟𝑐)
2  

(Eq. S8) 

 

In words, the diagonal entries represent elasticities of functions of metabolites with regard to 

dynamics in their own concentration. This reflects that metabolites are affecting their own 

concentration dynamics by participating as substrates and/or products in enzymatic reactions. 

Non-diagonal entries of J reflect any regulatory effects of metabolites on all other metabolic 

functions within a reaction system (equations of derivatives are not explicitly shown). Further, 

the equations show that, depending on the degree of substrate saturation of an enzyme, 

dynamics of substrate concentrations have a differential effect on the Jacobian trajectories. 

For example, if enzymes, catalysing the rout,Glc and rout,Frc reactions, are fully saturated, further 



increase of substrate concentration (here: Glc and Frc) results in exponential approximation 

towards zero of the second term in Eqs. S7 and S8. Hence, under such conditions where 

reaction products of invertases strongly accumulate, hexose consuming reactions have a 

lower impact on hexose dynamics than under non-saturated conditions. At the same time, 

(strong) hexose accumulation results in invertase inhibition which limits invertase-induced 

sucrose dynamics because (Eq. S9): 

if Glc >> Suc and Frc >> Suc, then  lim
𝐺𝑙𝑐,𝐹𝑟𝑐 →∞

𝜕(𝑟𝑖𝑛−𝑟𝑖𝑛𝑣)

𝜕(𝑆𝑢𝑐)
= 0     (Eq. S9) 

 

These considerations are simplified because also enzyme parameters need to be considered 

in order to determine the Jacobian entries as well as their dynamics under different ratios of 

substrate-product concentrations. While KM and Ki represent characteristic and constant 

enzyme parameters, Vmax might differ significantly between time points and conditions under 

which (plant) metabolism is analysed. This might be due to a changing total enzyme amount 

or a changing temperature which affects reaction constants as described by the Arrhenius 

equation (Arrhenius, 1889). Altogether, this establishes a multi-parameter space for the 

estimation of a biochemical Jacobian matrix. 

Its estimation from experimental data is challenged by the need for kinetic parameters which 

are sometimes not available or need to be acquired within laborious, difficult and error-prone 

experiments. To overcome experimental limitations by forward kinetic experiments, inverse 

estimation of J has been suggested based on covariance information of metabolite 

concentrations (Steuer et al., 2003). Here, fluctuation terms at a metabolic steady state are 

estimated from (co)variance information contained in metabolomics data. Applying this 

approach, regulatory hubs of metabolic networks can be identified without measuring enzyme 

kinetic parameters (Nägele et al., 2014; Sun & Weckwerth, 2012; Weckwerth, 2019; Wilson et 

al., 2020). However, experimental validation of predicted effects on enzymatic regulation is 

essential for such inverse estimations. Two main reasons why such inverse approximation 

might fail to correctly predict metabolic regulation are (i) strong deviation from steady state 

assumption due to significant internal and/or external perturbations, and (ii) 

misinterpretation of reasons for metabolite (co)variance, e.g., technical variance. Despite all 

experimental complications, a combined approach of inverse Jacobian matrix estimation and 



experimental validation might support the analysis and understanding of complex metabolic 

network regulation (Wilson et al., 2020). 

In summary, calculation and estimation of Jacobian matrices is a crucial element of system 

theory, and its application to biochemical networks seems mandatory to unravel complex 

regulatory principles. Entries of the Jacobian matrix are first-order partial derivatives of 

variable functions. As explained before, in a metabolic network context, it provides 

information about the effect of dynamics of one metabolite concentration on a specific 

metabolic function. Also, evaluation of eigenvalues of J indicates stability or instability of a 

metabolic system which provides important information about system behaviour at a 

considered steady state (Fürtauer & Nägele, 2016; Grimbs et al., 2007; Reznik & Segrè, 2010). 

Beyond, due to its tight regulation, many compounds of central (plant) primary metabolism 

are typically observed to be stabilized to a quasi-steady state without significant fluctuations 

of metabolite concentrations during a period of at least minutes, if not hours (Küstner et al., 

2019; Nägele et al., 2012; Sulpice et al., 2014). Hence, although the Jacobian matrix is derived 

based on steady state assumptions, it is frequently applicable to study and predict dynamic 

system properties in complex networks within a certain period of experimental observations. 

For example, reconstruction of high-dimensional interaction Jacobian networks based on 

empirical time series data supported the identification of dynamical stability of a bacterial 

community (Chang et al., 2021). In another recent example, Jacobians were shown to support 

the study of control in networks with uncertain structure (Klickstein & Sorrentino, 2021) which 

highlights its central role for mathematical analysis in signalling and metabolic networks.  

In the following paragraph, the Hessian matrix is introduced in context of metabolic regulation 

which comprises second-order partial derivatives. It is discussed in context of the provided 

example of invertase-catalysed sucrose cleavage.       

 

Applying the Hessian matrix to study substrate-product-interactions on metabolic functions 
The Hessian matrix of a function f(x1, x2, x3, …, xn) with n variables contains its second-order 

partial derivatives. Following Schwarz’ theorem (also: Clairaut’s theorem), it is an n x n 

symmetric matrix, i.e., the second-order partial derivatives satisfy identity regarding the order 

of differentiation (Eq. S10). 



𝜕

𝜕𝑥𝑖
(
𝜕𝑓

𝜕𝑥𝑗
) =

𝜕

𝜕𝑥𝑗
(
𝜕𝑓

𝜕𝑥𝑖
) =

𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
 

(Eq. S10) 

 

Considering metabolite concentrations as variables within metabolic functions of the given 

invertase reaction system, the Hessian matrices of f(Suc) calculates as follows (Eq. S11): 

𝐻𝑓(𝑆𝑢𝑐)(𝑆𝑢𝑐, 𝐺𝑙𝑐 𝐹𝑟𝑐) = (

ℎf(Suc),11 ℎf(Suc),12 ℎf(Suc),13
ℎf(Suc),21 ℎf(Suc),22 ℎf(Suc),23
ℎf(Suc),31 ℎf(Suc),32 ℎf(Suc),33

) =

(

 
 
 
 

𝜕2(𝑟𝑖𝑛 − 𝑟𝑖𝑛𝑣)

𝜕(𝑆𝑢𝑐)2
𝜕2(𝑟𝑖𝑛 − 𝑟𝑖𝑛𝑣)

𝜕(𝑆𝑢𝑐)𝜕(𝐺𝑙𝑐)

𝜕2(𝑟𝑖𝑛 − 𝑟𝑖𝑛𝑣)

𝜕(𝑆𝑢𝑐)𝜕(𝐹𝑟𝑐)

𝜕2(𝑟𝑖𝑛 − 𝑟𝑖𝑛𝑣)

𝜕(𝐺𝑙𝑐)𝜕(𝑆𝑢𝑐)

𝜕2(𝑟𝑖𝑛 − 𝑟𝑖𝑛𝑣)

𝜕(𝐺𝑙𝑐)2
𝜕2(𝑟𝑖𝑛 − 𝑟𝑖𝑛𝑣)

𝜕(𝐺𝑙𝑐)𝜕(𝐹𝑟𝑐)

𝜕2(𝑟𝑖𝑛 − 𝑟𝑖𝑛𝑣)

𝜕(𝐹𝑟𝑐)𝜕(𝑆𝑢𝑐)

𝜕2(𝑟𝑖𝑛 − 𝑟𝑖𝑛𝑣)

𝜕(𝐹𝑟𝑐)𝜕(𝐺𝑙𝑐)

𝜕2(𝑟𝑖𝑛 − 𝑟𝑖𝑛𝑣)

𝜕(𝐹𝑟𝑐)2 )

 
 
 
 

      

(𝐸𝑞. 𝑆11) 

 

Accordingly, Hessian matrices of metabolic functions of both reaction products, glucose and 

fructose, comprise second-order partial derivates of f(Glc) and f(Frc), respectively (Eqs. S12 

and S13). 

 

𝐻𝑓(𝐺𝑙𝑐)(𝐺𝑙𝑐, 𝑆𝑢𝑐, 𝐹𝑟𝑐) = (

ℎf(Glc),11 ℎf(Glc),12 ℎf(Glc),13
ℎf(Glc),21 ℎf(Glc),22 ℎf(Glc),23
ℎf(Glc),31 ℎf(Glc),32 ℎf(Glc),33

) =

(

 
 
 
 

𝜕2(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐺𝑙𝑐)

𝜕(𝐺𝑙𝑐)2
𝜕2(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐺𝑙𝑐)

𝜕(𝐺𝑙𝑐)𝜕(𝑆𝑢𝑐)

𝜕2(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐺𝑙𝑐)

𝜕(𝐺𝑙𝑐)𝜕(𝐹𝑟𝑐)

𝜕2(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐺𝑙𝑐)

𝜕(𝑆𝑢𝑐)𝜕(𝐺𝑙𝑐)

𝜕2(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐺𝑙𝑐)

𝜕(𝑆𝑢𝑐)2
𝜕2(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐺𝑙𝑐)

𝜕(𝑆𝑢𝑐)𝜕(𝐹𝑟𝑐)

𝜕2(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐺𝑙𝑐)

𝜕(𝐹𝑟𝑐)𝜕(𝐺𝑙𝑐)

𝜕2(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐺𝑙𝑐)

𝜕(𝐹𝑟𝑐)𝜕(𝑆𝑢𝑐)

𝜕2(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐺𝑙𝑐)

𝜕(𝐹𝑟𝑐)2 )

 
 
 
 

 

(𝐸𝑞. 𝑆12) 

 

𝐻𝑓(𝐹𝑟𝑐)(𝐹𝑟𝑐, 𝑆𝑢𝑐, 𝐺𝑙𝑐) = (

ℎf(Frc),11 ℎf(Frc),12 ℎf(Frc),13
ℎf(Frc),21 ℎf(Frc),22 ℎf(Frc),23
ℎf(Frc),31 ℎf(Frc),32 ℎf(Frc),33

) =

(

 
 
 
 

𝜕2(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐹𝑟𝑐)

𝜕(𝐹𝑟𝑐)2
𝜕2(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐹𝑟𝑐)

𝜕(𝐹𝑟𝑐)𝜕(𝑆𝑢𝑐)

𝜕2(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐹𝑟𝑐)

𝜕(𝐹𝑟𝑐)𝜕(𝐺𝑙𝑐)

𝜕2(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐹𝑟𝑐)

𝜕(𝑆𝑢𝑐)𝜕(𝐹𝑟𝑐)

𝜕2(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐹𝑟𝑐)

𝜕(𝑆𝑢𝑐)2
𝜕2(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐹𝑟𝑐)

𝜕(𝑆𝑢𝑐)𝜕(𝐺𝑙𝑐)

𝜕2(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐹𝑟𝑐)

𝜕(𝐺𝑙𝑐)𝜕(𝐹𝑟𝑐)

𝜕2(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐹𝑟𝑐)

𝜕(𝐺𝑙𝑐)𝜕(𝑆𝑢𝑐)

𝜕2(𝑟𝐼𝑛𝑣 − 𝑟𝑜𝑢𝑡,𝐹𝑟𝑐)

𝜕(𝐺𝑙𝑐)2 )

 
 
 
 

 

(𝐸𝑞. 𝑆13) 

 

The Hessian matrix provides information about simultaneous effects of a combination of 

concentration dynamics of substrates, products or other metabolic effectors on a metabolic 

function. For example, in an invertase reaction, entries ℎf(Suc),11  =  
𝜕2(𝑟𝑖𝑛−𝑟𝑖𝑛𝑣)

𝜕(𝑆𝑢𝑐)2
,   ℎf(Suc),12  =

 
𝜕2(𝑟𝑖𝑛−𝑟𝑖𝑛𝑣)

𝜕(𝑆𝑢𝑐)𝜕(𝐺𝑙𝑐)
 and ℎf(Suc),13  =  

𝜕2(𝑟𝑖𝑛−𝑟𝑖𝑛𝑣)

𝜕(𝑆𝑢𝑐)𝜕(𝐹𝑟𝑐)
 provide information about how the metabolic 



function of sucrose depends on dynamics of (i) sucrose (hf(Suc),11), (ii) sucrose and glucose 

(hf(Suc),12), and (iii) sucrose and fructose concentrations (hf(Suc),13), respectively (Eqs. S14  -S16). 

 

ℎf(Suc),11  =  
𝜕2(𝑟𝑖𝑛 − 𝑟𝑖𝑛𝑣)

𝜕(𝑆𝑢𝑐)2
= 

2𝐾𝑀,𝑆𝑢𝑐 𝐾𝑖,𝐺𝑙𝑐 𝐾𝑖,𝐹𝑟𝑐
2 𝑉𝑚𝑎𝑥,𝑖𝑛𝑣 (𝐹𝑟𝑐 + 𝐾𝑖,𝐹𝑟𝑐)

(𝐺𝑙𝑐 + 𝐾𝑖,𝐺𝑙𝑐)(𝐾𝑀,𝑆𝑢𝑐 𝐹𝑟𝑐 + 𝐾𝑀,𝑆𝑢𝑐 𝐾𝑖,𝐹𝑟𝑐 + 𝐾𝑖,𝐹𝑟𝑐𝑆𝑢𝑐)
3 

(Eq. S14) 

 

ℎf(Suc),12  =  
𝜕2(𝑟𝑖𝑛 − 𝑟𝑖𝑛𝑣)

𝜕(𝑆𝑢𝑐)𝜕(𝐺𝑙𝑐)
=  

𝐾𝑀,𝑆𝑢𝑐𝐾𝑖,𝐺𝑙𝑐𝐾𝑖,𝐹𝑟𝑐𝑉𝑚𝑎𝑥,𝑖𝑛𝑣(𝐹𝑟𝑐 + 𝐾𝑖,𝐹𝑟𝑐)

(𝐺𝑙𝑐 + 𝐾𝑖,𝐺𝑙𝑐)
2
(𝐾𝑀,𝑆𝑢𝑐 𝐹𝑟𝑐 + 𝐾𝑀,𝑆𝑢𝑐 𝐾𝑖,𝐹𝑟𝑐 + 𝐾𝑖,𝐹𝑟𝑐𝑆𝑢𝑐)

2 

(Eq. S15) 

 

ℎf(Suc),13  =  
𝜕2(𝑟𝑖𝑛 − 𝑟𝑖𝑛𝑣)

𝜕(𝑆𝑢𝑐)𝜕(𝐹𝑟𝑐)
=  
𝐾𝑀,𝑆𝑢𝑐𝐾𝑖,𝐺𝑙𝑐𝐾𝑖,𝐹𝑟𝑐𝑉𝑚𝑎𝑥,𝑖𝑛𝑣 (𝐾𝑀,𝑆𝑢𝑐 𝐹𝑟𝑐  + 𝐾𝑀,𝑆𝑢𝑐𝐾𝑖,𝐹𝑟𝑐 − 𝐾𝑖,𝐹𝑟𝑐 𝑆𝑢𝑐)

(𝐺𝑙𝑐 + 𝐾𝑖,𝐺𝑙𝑐) (𝐾𝑀,𝑆𝑢𝑐 𝐹𝑟𝑐 + 𝐾𝑀,𝑆𝑢𝑐 𝐾𝑖,𝐹𝑟𝑐 + 𝐾𝑖,𝐹𝑟𝑐𝑆𝑢𝑐)
3  

(Eq. S16) 

 

Competitive (Frc) and non-competitive inhibitors (Glc) differentially shape and affect the 

metabolic function of the reaction substrate (Suc) which is expressed in Hessian terms by 

different positions and exponents in nominators and denominators. While differential 

regulatory impact of different types of inhibitors on enzyme kinetics becomes evident from 

experimental enzyme kinetic analysis using purified enzymes, its interpretation in context of 

metabolic functions remains difficult. In this context, Jacobian and Hessian matrices provide 

important insight because they describe dynamics of metabolic functions with respect to a 

certain variable, e.g., a metabolic inhibitor. 
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