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epigenomic
feature

Sample accession or series
accession number tissue reference

H3K4me1

GSM3674621 leaves Lu et al., 2019; Crisp et al., 2020

GSM4668649 seedlings Niu et al., 2021

GSM4609829 root non- hair cells missing

GSM4785549 inflorescence Liu et al., 2021

E-MTAB-7370 unopened flower buds Lambing et al., 2020

H3K4me3

GSM3674620 leaves Lu et al., 2019; Crisp et al., 2020

GSM4154769 seedlings Liu et al., 2020

GSM2210857 roots Yen et al., 2017

GSM4785552 inflorescence Liu et al., 2021

GSE120664 sperm nuclei Borg et al.,  2020

H3K9me2

GSM4734580 leaves Wang et al., 2021

GSM3040062 10-day seedlings Ma et al., 2018

GSM4422529 mature embryos Parent et al., 2021

GSM4818168 flowers Feng et al., 2020

https://pubmed.ncbi.nlm.nih.gov/31740772/
https://pubmed.ncbi.nlm.nih.gov/32879011/
https://www.nature.com/articles/s41467-021-23637-4
https://www.nature.com/articles/s41467-021-23346-y
https://academic.oup.com/plcell/article/32/4/1218/6115668
https://pubmed.ncbi.nlm.nih.gov/31740772/
https://pubmed.ncbi.nlm.nih.gov/32879011/
https://www.nature.com/articles/s41598-020-59697-7
https://academic.oup.com/plphys/article/175/4/1826/6116942
https://www.nature.com/articles/s41467-021-23346-y
https://www.nature.com/articles/s41556-020-0515-y
https://genomebiology.biomedcentral.com/articles/10.1186/s13059-021-02359-2
https://pubmed.ncbi.nlm.nih.gov/29920280/
https://pubmed.ncbi.nlm.nih.gov/34016690/
https://epigeneticsandchromatin.biomedcentral.com/articles/10.1186/s13072-020-00361-9


E-MTAB-7370 unopened flower buds Lambing et al., 2020

H3K27me3

GSM3674617 leaves Lu et al., 2019; Crisp et al., 2020

GSM3617717 seedlings Shu et al., 2021

GSM2210865 roots Yen et al., 2017

GSM4785573 inflorescences Liu et al., 2021

GSE120664 sperm nuclei Borg et al.,  2020

ATAC

GSM3674715 leaves Lu et al., 2019; Crisp et al., 2020

GSM2719200 stem cells Sijacic et al., 2018

GSM2719204 mesophyll cells

GSM3498708 flowers Potok et al., 2019

GSE155344 microspores Borg et al., 2021

DNase

GSM1289358 seedlings

Sullivan et al., 2014; Sullivan et al., 2019

GSM1289374 whole roots

GSM1289378 seed coats

GSM1289380 open flowers

GSM1289381 unopened flower

Supplementary Table S1. Origin and description of datasets for the 6 epigenomic features used in this study.
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50kb 1.56** -3.6*** -1.67*
*

0.17 -0.04 0.05 -0.004*
**

0.11*** 0.65*** 0.006* 0.28

100kb 1.00 -5.02*
**

-1.14 0.26 -0.07 0.16* -0.01**
*

0.14** 0.71*** -0.005 0.36

200kb 0.06 -4.44* 0.23 0.3 -0.09 0.16 -0.01** 0.14 0.75*** -0.000
7

0.42

500kb -1.01 -5.82 1.08 0.27 -0.08 0.24 -0.01 0.16 0.83*** 0.003 0.50

Supplementary Table S2. Adjusted parameters and R2 values for the additive model
when using different bin sizes. The 9 successive features are those in Fig. 1
(ordered left to right and top to bottom). Parameter values were obtained using the
lm() function in R. *, ** and *** correspond to parameters having p-values less than
0.05, 0.01 and 0.001 respectively for the hypothesis that the true value of the
parameter vanishes. The first column gives the bin size used for each fit. Note that
the statistical noise intrinsic to CO formation inevitably drives R2 (last column, cf. Eq.
2 in Main) downward as bin size decreases.



bin size (kb) AIC BIC R2 Model considered

50 247310 247367.8 0.33 10 states

50 247214.7 247289.8 0.34 10 states + IR

50 246531.8 246618.4 0.39 10_states + IR + SNP

50 246459.3 246545.9 0.4 10_states + IR + SNP + rescaling

100 224047.6 224098.4 0.41 10 states

100 223974 224040 0.43 10 states + IR

100 223515.7 223592 0.48 10_states + IR + SNP

100 223444.3 223520.6 0.49 10_states + IR + SNP + rescaling

200 201007.7 201051.7 0.49 10 states

200 200953 201010.2 0.5 10 states + IR

200 200670.5 200736.4 0.54 10_states + IR + SNP

200 200590.1 200656 0.56 10_states + IR + SNP + rescaling

500 170023 170057.8 0.58 10 states

500 170017.7 170062.9 0.59 10 states + IR

500 169754 169806.2 0.64 10_states + IR + SNP

500 169681 169733.2 0.66 10_states + IR + SNP + rescaling

Supplementary Table S3. Model selection via AIC and BIC values. For each of the
different bin sizes, we consider the sequence of models of increasing complexity,
starting with the 10 parameters for the 10 states, adding to that the 3 parameters for
the IR size effect, adding to that the 2 parameters for the SNP effect, and finally
adding the rescaling (no additional parameters). The AIC and BIC approaches
penalize the goodness of fit measure by an amount that depends on the number of
parameters. Using a more complex model (with more parameters) is only justified if
the associated criterion (AIC or BIC) is lower. The table shows that the data drives
one to use the full model having 15 parameters and scaling.



name 50kb 100kb 200kb 500kb

r_state1 1.367 1.199 1.663 0.984

r_state2 1.908 1.998 2.457 1.965

r_state3 5.43E-09 5.95E-09 5.52E-09 4.95E-09

r_state4 1.822 1.832 2.54 1.926

r_state5 0.713 0.804 1.397 0.809

r_state6 0.328 5.95E-09 5.52E-09 4.95E-09

r_state7 5.43E-09 5.95E-09 5.52E-09 4.95E-09

r_state8 1.325 1.538 2.481 1.782

r_state9 0.007 0.002 5.52E-09 4.95E-09

r_SV 0.009 0.008 0.007 0.001

α1 1.087 0.948 0.774 1.008

α2 0.087 0.085 0.087 0.082

β1 0.513 0.452 0.542 0.487

β2 7.218 7.63 12.743 2.708

β3 2.998 3.068 2.245 1.554

R2 0.403 0.488 0.563 0.657

Supplementary Table S4. Parameter values after calibration of the quantitative model
having 15 parameters when using bin sizes from 50 to 500 kb. In the column “name”,
r_state1 to r_SV refer to the “base recombination rate” for each of the 10 chromatin
states, α1 and α2 (respectively β1, β2. β3) refer to the parameters in the SNP
(respectively intergenic-region size) modulation effect, and finally R2 refers to the
fraction of the variance explained by the model (cf. Eq. 2 in Main).



Chr1 (fit) Chr2 (fit) Chr3 (fit) Chr4 (fit) Chr5 (fit)

Chr1 (predict) 0.463 0.299 0.347 0.297 0.438

Chr2 (predict) 0.403 0.502 0.448 0.48 0.434

Chr3 (predict) 0.523 0.556 0.607 0.534 0.56

Chr4 (predict) 0.426 0.472 0.473 0.54 0.466

Chr5 (predict) 0.453 0.376 0.41 0.374 0.473

Supplementary Table S5. Predictive power of the model with 15 parameters. We provide the R2 values when using one
chromosome (that labeled by the considered column) to fit the 15 parameters and then apply that calibrated model to predict
recombination landscapes of all 5 chromosomes. The genome has been segmented into bins of size 100 kb. Note that in each row
the largest R2 value must occur for the chromosome that has been used to do the fitting of parameters. Omitting the R2 values

produced by the calibrations (on the diagonal), the average R2 of the predictions (remaining 20 values) is 0.427.



Chr1 (fit) Chr2 (fit) Chr3 (fit) Chr4 (fit) Chr5 (fit)

Chr1 (predict) 0.348 0.222 0.22 0.171 0.292

Chr2 (predict) 0.211 0.409 0.263 0.344 0.339

Chr3 (predict) 0.138 0.35 0.455 0.353 0.383

Chr4 (predict) 0.218 0.347 0.34 0.383 0.328

Chr5 (predict) 0.281 0.218 0.274 0.215 0.346

Supplementary Table S6. Predictive power of the additive model (Eq. 1) with 10 parameters exploiting the genomic and epigenomic
features of Fig. 1. We provide the R2 values when using one chromosome (that labeled by the considered column) to fit the 10
parameters and then apply that calibrated model to predict recombination landscapes of all 5 chromosomes (same procedure as in
Supplementary Table S5, again with bins of size 100 kb). Omitting the R2 values produced by the calibrations (on the diagonal), the

average R2 of the predictions (remaining 20 values) is 0.275.



Chr1_fit Chr2_fit Chr3_fit Chr4_fit Chr5_fit

Chr1_predict 0.447 -1.364 -0.493 -0.407 0.176

Chr2_predict -0.299 0.579 -0.614 -39.286 -8.073

Chr3_predict -0.307 -78.667 0.568 -39.829 -2.22

Chr4_predict 0.074 -17.86 0.001 0.545 -0.349

Chr5_predict -0.3 -27.968 -1.393 -2.783 0.501

Supplementary Table S7. Predictive power of the model with interactions (Eq. 3) with 46 parameters exploiting the genomic and
epigenomic features of Fig. 1. We provide the R2 values when using one chromosome (that labeled by the considered column) to fit
the 46 parameters and then apply that calibrated model to predict recombination landscapes of all 5 chromosomes (same
procedure as in Supplementary Table S5, again with bins of size 100 kb). Note that the R2 of most of the predictions are negative,
showing that this model with interactions has no predictive power, presumably because it strongly overfits the data during
calibration.



Supplementary Figure S1. The correlations between recombination rate and six
epigenomic features when measured in somatic vs. germinal tissues. From (A) to
(F), each sub figure combines four plots using data from two somatic and two
germinal tissues for the same epigenomic feature. The subtitle on each plot indicates
the corresponding tissue. Each dot represents the values for a 100-kb bin. The
x-axis values correspond to the density of peaks or reads of each feature according
to the format of raw data downloaded from NCBI or ArrayExpress databases. The
y-axis gives the associated recombination rate based on a total of 17,077 crossovers
from the Col-0-Ler F2 population. As in Fig. 1 of Main, curves show the fits using a



polynomial of degree 4 over the full data range from which the R2 values are
calculated. The main part of each panel corresponds to a zoom of the inset to show
greater detail in the main part of the scatter plot.

Supplementary Figure S2. Comparison of experimental and predicted recombination
rates. Here the predictions are those of the 10 chromatin states model using the
experimentally measured state-specific recombination rates (no adjustable
parameters). Each data point is associated with a bin of 100 kb along the genome.
The fraction of variance explained by the model (computed using the deviations from
the predicted recombination rates) is R2 = 0.24.



Supplementary Figure S3. Dependence of recombination patterns on gene body
size. The profiles of chromatin states and the recombination rate patterns are
determined separately in the four quantiles of gene body size. The procedures are
the same as in Fig 2B, and the blue curve shows the prediction of the model with 10
chromatin states when using the experimentally measured state-specific
recombination rates (no adjustable parameters). The predictions of the model follow
the experimental values rather well.



Supplementary Figure S4. The profiles of chromatin states and recombination rate in
intergenic regions between genes of divergent orientation. All “divergent” intergenic
regions larger than 100 base pairs are divided into 4 groups depending on their size,
and each group has one quantile (25 %) of intergenic-region events. In each group,
we segmented every intergenic region into 100 bins, then pooled all data of each bin,
and calculated the fraction of 9 chromatin states and SVs and the recombination rate
of each bin. In the top of this figure we show the fraction of states on the y-axis while
the x-axis gives the relative position using 100 bins. At the bottom of this figure, the
y-axis corresponds to the recombination rate, while the x-axis is as above. The
bottom histograms show the experimental recombination rate in the 100 bins, the
black dashed line giving the corresponding average. The procedures are the same
as in Fig 2B. The continuous blue curve shows the prediction of the model with 10
chromatin states when using the experimentally measured state-specific
recombination rates (no adjustable parameters). The blue dashed line is the
corresponding average. The predictions of the model systematically overestimate
recombination rates in the small intergenic regions.



Supplementary Figure S5. The profiles of chromatin states and patterns of
recombination rate in intergenic regions between genes of convergent orientation.
The procedures and quantities displayed are as in Supplementary Figure S4. The
predictions of the model systematically overestimate recombination rates in the small
intergenic regions.



Supplementary Figure S6. The profiles of chromatin states and recombination rate in
intergenic regions between genes of parallel orientation. The procedures and
quantities displayed are as in Supplementary Figure S4. The predictions of the
model systematically overestimate recombination rates in the small intergenic
regions.



Supplementary Figure S7. Another framework to test whether recombination rate is
suppressed by low SNP density. In this approach (different from the one in Main), we
compare two hypotheses, H0 and H1. Under H0, we assume that there is an
(unknown) “reference” recombination landscape, likely driven by genomic or
epigenomic features, but common to all 5 F2 populations of Blackwell et al. (2020).
(In Main, this reference landscape was implicitly assumed to be constant.) Under H1,
the common landscape is further modulated by the divergence between the
homologs present, thus differently in each cross and each bin. This modulation is
parametrized via the function (a + b x) exp(- cx) where x is the SNP density of the bin
in the considered cross. Because high SNP density is expected to lead to
suppressed recombination, the test is only applied to data belonging to the first two
quantiles of SNP density. We confront H0 to H1 by asking whether a good fit to the
data necessitates the modulation effect. We thus compare the chi-square goodness
of fit using H1 to what would be expected if there were no causal suppressive effect
(the H0 hypothesis). That distribution is obtained by shuffling in each bin the values
of SNP density between crosses to decorrelate recombination rate from any SNP
density effect. The figure displays the histogram of the chi-square values under H0
where for each shuffling we have adjusted the parameters a, b, and c to minimize
the chi-square for that shuffle. Also, the red line gives the chi-square value in the
unshuffled data, corresponding to H1, showing that the recombination rate
modulation, when using the SNPs between the parents of each separate cross,
improves the fit far more than expected by chance (p-value ≼ 0.001).



Supplementary Figure S8. Scatterplots of experimental and predicted recombination
rate when the 15 parameter model calibration is done using bin sizes ranging from
50 to 500 kb. The x-axis specifies the recombination rate predicted by our
quantitative model that incorporates 10 chromatin states along with contextual
modulating effects, having a total of 15 adjustable parameters. The y-axis
corresponds to the experimental recombination rate as produced from the Rowan et
al. (2019) dataset. R2 is the fraction of the variance explained by the model; it
inevitably increases as bin size decreases because the CO numbers per Mb are
more subject to stochastic noise.





Supplementary Figure S9. Experimental and predicted recombination landscapes of
chromosomes 2 to 5. Landscapes using 100 kb bins were produced from the Rowan
et al. dataset (red) and from our quantitative model with 15 adjustable parameters
(blue). Each inset shows a corresponding zoom within the right arm. R2 is the
fraction of the recombination rate variance that is explained by the model.


