RESEARCH ARTICLE

Co-Evolutionary strategies at the collective level for improved generalism - Appendix

Przemyslaw Andrzej Grudniewski^{1*} and Adam James Sobey^{1,2}

¹Maritime Engineering Group, University of Southampton, Southampton, SO16 7QF, England, UK ²Marine and Maritime Group, Data-centric Engineering, The Alan Turing Institute, The British Library, London, NW1 2DB, England, UK

*Corresponding author. E-mail: pag1c18@soton.ac.uk

Received: ; Revised: ; Accepted:

Keywords: Genetic algorithms; co-evolutionary; multi-level selection; multi-objective optimisation.

Abstract

In many complex practical optimisation cases the dominant characteristics of the problem are often not known prior. Therefore, there is a need to develop general solvers as it is not always possible to tailor a specialised approach to each application. The previously developed Multi-Level Selection Genetic Algorithm already shows good performance on a range of problems due to its diversity-first approach, which is rare among Evolutionary Algorithms. To increase the generality of its performance this paper proposes utilisation of multiple distinct evolutionary strategies simultaneously, similarly to algorithm selection, but with co-evolutionary mechanisms between the sub-populations. This distinctive approach to co-evolution provides less regular communication between sub-populations with competition between collectives rather than individuals. This encourages the collectives to act more independently creating a unique sub-regional search, leading to the development of co-evolutionary MLSGA (cMLSGA). To test this methodology nine genetic algorithms are selected to generate several variants of cMLSGA, which incorporates these approaches at the individual level. The mechanisms are tested on 100 different functions and benchmarked against the 9 state-of-the-art competitors to evaluate the generality of each approach. The results show that the diversity divergence in the principles of working of the selected co-evolutionary approaches is more important than their individual performances. The proposed methodology has the most uniform performance on the divergent problem types, from across the tested state-of-the-art, leading to an algorithm more likely to solve complex problems with limited knowledge about the search space, but is outperformed by more specialised solvers on simpler benchmarking studies.

Impact Statement

It is proposed in this paper that the uptake of many Genetic Algorithms is low as they are evaluated over a narrow range of problems. This means they have similar characteristics that do not properly reflect the complexity of real-world problems. The results show that those that perform across a range of problems are more likely to perform well on real applications. This explains how the leading algorithm presented in this benchmarking, cMLSGA, is now being implemented into a variety of different applications.

1. Additional tables

Category	Problem	d	Additional properties				
Unconstrained							
I. Simple	ZDT1	30	Convex				
	ZDT2	30	Concave				
	ZDT3	30	Discontinuous				
	ZDT4	10	Multimodal, Convex				
	ZDT6	10	Multimodal, Biased, Concave				
	UF1	30	Complex PS				
II. Convex	UF2	30	Complex PS				
	UF3	30	Complex PS				
	UF4	30	Complex PS				
III. Concave	WFG4	22	Multimodal				
	WFG5	22	Deceptive				
	WFG6	22	Non-separable				
	WFG7	22	Biased				
	WFG8	22	Biased, Non-separable				
	WFG9	22	Biased, Non-separable, Deceptive				
IV. Linear/Mixed	UF7	30	Complex PS, Linear				
	WFG1	22	Biased, Mixed				
	WFG3	22	Non-separable, Degenerated, Linear				
	UF5	30	Linear, Distinct points, Complex PS				
V Discontinuous	UF6	30	Complex PS				
v. Discontinuous	WFG2	22	Convex, Non-Separable				
	MOP4	10	Discontinuous				
VI. Imbalanced	MOP1	10	Convex				
	MOP2	10	Convex				
	MOP3	10	Concave				
	MOP5	10	Convex				
	IMB1	10	Convex				
	IMB2	10	Linear				
	IMB3	10	Concave				
	IMB7	10	Convex, Non-separable				
	IMB8	10	Linear, Non-separable				
	IMB9	10	Concave, Non-separable				

Table 7: Summary of the utilised two-objective test set

Category	Problem	d	Additional properties				
Constrained							
VII. Discontinuous	CF1	10	Linear, Complex PS, Distinct points				
	CF2	10	Convex, Complex PS				
	CF3	10	Concave, Complex PS				
VIII. Continuous	CF4	10	Linear, Complex PS				
	CF5	10	Linear, Complex PS				
	CF6	10	Mixed, Complex PS				
	CF7	10	Mixed, Complex PS				
IX. Imbalanced	IMB11	10	Convex				
	IMB12	10	Linear				
	IMB13	10	Concave				
X. Diversity-hard	DAS-CMOP1(5)	30	Concave, Discontinuous				
	DAS-CMOP2(5)	30	Mixed, Continuous				
	DAS-CMOP3(5)	30	Linear, Discontinuous, Multimodal				
	DAS-CMOP4(5)	30	Concave, Discontinuous				
	DAS-CMOP5(5)	30	Mixed, Discontinuous				
	DAS-CMOP6(5)	30	Distinct points, Degenerated				
XI. Feasibility-hard	DAS-CMOP1(6)	30	Concave, Discontinuous				
	DAS-CMOP2(6)	30	Mixed, Continuous				
	DAS-CMOP3(6)	30	Linear, Discontinuous, Multimodal				
	DAS-CMOP4(6)	30	Concave, Discontinuous				
	DAS-CMOP5(6))	30	Mixed, Discontinuous				
	DAS-CMOP6(6)	30	Distinct points, Degenerated				
XII.Convergence-hard	DAS-CMOP1(7)	30	Concave, Discontinuous				
	DAS-CMOP2(7)	30	Mixed, Continuous				
	DAS-CMOP3(7))	30	Linear, Discontinuous, Multimodal				
	DAS-CMOP4(7)	30	Concave, Discontinuous				
	DAS-CMOP5(7)	30	Mixed, Discontinuous				
	DAS-CMOP6(7)	30	Distinct points, Degenerated				

Table 7: Summary of the utilised two-objective test set (continued)

d denotes the number of decision variables.

Category	Problem	d	Additional properties					
Unconstrained								
	DTLZ2	12						
	DTLZ3	12	Multimodal					
	DTLZ4	12	Biased					
	DTLZ5	12	Degenerated					
	DTLZ6	12	Degenerated, Biased					
I. Concave	UF8	30	Complex PS					
	UF10	30	Complex PS					
	WFG4	24	Multimodal					
	WFG5	24	Deceptive					
	WFG6	24	Non-separable					
	WFG7	24	Biased					
	WFG8	24	Biased, Non-separable					
	WFG9	24	Biased, Non-separable, Deceptive					
	DTLZ1	7	Linear, Multimodal					
IV. Linear/Mixed	WFG1	24	Biased, Mixed					
	WFG3	24	Non-separable, Degenerated, Linear					
	DTLZ7	22	Mixed, Multimodal					
V. Discontinuous	UF9	30	Complex PS					
	WFG2	24	Convex, Non-Separable					
VI. Imbalanced	MOP6	10	Linear					
	MOP7	10	Concave					
	IMB4	10	Linear					
	IMB5	10	Concave					
	IMB6	10	Linear					
	IMB10	10	Linear					
Constrained								
	DTLZ8	30	Mixed, Degenerated, Biased					
	DTLZ9	30	Concave, Degenerated					
VII. Discontinuous	CF8	10	Concave, Degenerated, Complex PS					
	CF9	10	Concave, Complex PS					
	CF10	10	Concave, Complex PS					
IX. Imbalanced	IMB14	10	Linear					
X. Diversity-hard	DAS-CMOP7(5)	30	Linear, Degenerated, Discontinuous					
	DAS-CMOP8(5)	30	Concave, Discontinuous					
	DAS-CMOP9(5)	30	Concave, Discontinuous, Biased					
XI. Feasibility-hard	DAS-CMOP7(6)	30	Linear, Degenerated, Discontinuous					
	DAS-CMOP8(6)	30	Concave, Discontinuous					
	DAS-CMOP9(6)	30	Concave, Discontinuous, Biased					
XII.Convergence-hard	DAS-CMOP7(7)	30	Linear, Degenerated, Discontinuous					
	DAS-CMOP8(7)	30	Concave, Discontinuous					
	DAS-CMOP9(7)	30	Concave, Discontinuous, Biased					

Table 8: Summary of the utilised three-objective test set

d denotes the number of decision variables. The same categories are utilised as for the two-objective cases.