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Abstract
In many complex practical optimisation cases the dominant characteristics of the problem are often
not known prior. Therefore, there is a need to develop general solvers as it is not always possible
to tailor a specialised approach to each application. The previously developed Multi-Level Selection
Genetic Algorithm already shows good performance on a range of problems due to its diversity-first
approach, which is rare among Evolutionary Algorithms. To increase the generality of its performance
this paper proposes utilisation of multiple distinct evolutionary strategies simultaneously, similarly
to algorithm selection, but with co-evolutionary mechanisms between the sub-populations. This dis-
tinctive approach to co-evolution provides less regular communication between sub-populations with
competition between collectives rather than individuals. This encourages the collectives to act more
independently creating a unique sub-regional search, leading to the development of co-evolutionary
MLSGA (cMLSGA). To test this methodology nine genetic algorithms are selected to generate several
variants of cMLSGA, which incorporates these approaches at the individual level. The mechanisms are
tested on 100 different functions and benchmarked against the 9 state-of-the-art competitors to evaluate
the generality of each approach. The results show that the diversity divergence in the principles of work-
ing of the selected co-evolutionary approaches is more important than their individual performances.
The proposed methodology has the most uniform performance on the divergent problem types, from
across the tested state-of-the-art, leading to an algorithm more likely to solve complex problems with
limited knowledge about the search space, but is outperformed by more specialised solvers on simpler
benchmarking studies.

Impact Statement
It is proposed in this paper that the uptake of many Genetic Algorithms is low as they are evaluated
over a narrow range of problems. This means they have similar characteristics that do not prop-
erly reflect the complexity of real-world problems. The results show that those that perform across a
range of problems are more likely to perform well on real applications. This explains how the lead-
ing algorithm presented in this benchmarking, cMLSGA, is now being implemented into a variety
of different applications.
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1. Additional tables

Table 7: Summary of the utilised two-objective test set

Category Problem d Additional properties
Unconstrained

I. Simple

ZDT1 30 Convex
ZDT2 30 Concave
ZDT3 30 Discontinuous
ZDT4 10 Multimodal, Convex
ZDT6 10 Multimodal, Biased, Concave

II. Convex
UF1 30 Complex PS
UF2 30 Complex PS
UF3 30 Complex PS

III. Concave

UF4 30 Complex PS
WFG4 22 Multimodal
WFG5 22 Deceptive
WFG6 22 Non-separable
WFG7 22 Biased
WFG8 22 Biased, Non-separable
WFG9 22 Biased, Non-separable, Deceptive

IV. Linear/Mixed
UF7 30 Complex PS, Linear

WFG1 22 Biased, Mixed
WFG3 22 Non-separable, Degenerated, Linear

V. Discontinuous

UF5 30 Linear, Distinct points, Complex PS
UF6 30 Complex PS

WFG2 22 Convex, Non-Separable
MOP4 10 Discontinuous

VI. Imbalanced

MOP1 10 Convex
MOP2 10 Convex
MOP3 10 Concave
MOP5 10 Convex
IMB1 10 Convex
IMB2 10 Linear
IMB3 10 Concave
IMB7 10 Convex, Non-separable
IMB8 10 Linear, Non-separable
IMB9 10 Concave, Non-separable
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Table 7: Summary of the utilised two-objective test set (continued)

Category Problem d Additional properties
Constrained

VII. Discontinuous
CF1 10 Linear, Complex PS, Distinct points
CF2 10 Convex, Complex PS
CF3 10 Concave, Complex PS

VIII. Continuous
CF4 10 Linear, Complex PS
CF5 10 Linear, Complex PS
CF6 10 Mixed, Complex PS
CF7 10 Mixed, Complex PS

IX. Imbalanced
IMB11 10 Convex
IMB12 10 Linear
IMB13 10 Concave

X. Diversity-hard

DAS-CMOP1(5) 30 Concave, Discontinuous
DAS-CMOP2(5) 30 Mixed, Continuous
DAS-CMOP3(5) 30 Linear, Discontinuous, Multimodal
DAS-CMOP4(5) 30 Concave, Discontinuous
DAS-CMOP5(5) 30 Mixed, Discontinuous
DAS-CMOP6(5) 30 Distinct points, Degenerated

XI. Feasibility-hard

DAS-CMOP1(6) 30 Concave, Discontinuous
DAS-CMOP2(6) 30 Mixed, Continuous
DAS-CMOP3(6) 30 Linear, Discontinuous, Multimodal
DAS-CMOP4(6) 30 Concave, Discontinuous
DAS-CMOP5(6)) 30 Mixed, Discontinuous
DAS-CMOP6(6) 30 Distinct points, Degenerated

XII.Convergence-hard

DAS-CMOP1(7) 30 Concave, Discontinuous
DAS-CMOP2(7) 30 Mixed, Continuous
DAS-CMOP3(7)) 30 Linear, Discontinuous, Multimodal
DAS-CMOP4(7) 30 Concave, Discontinuous
DAS-CMOP5(7) 30 Mixed, Discontinuous
DAS-CMOP6(7) 30 Distinct points, Degenerated

d denotes the number of decision variables.
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Table 8: Summary of the utilised three-objective test set

Category Problem d Additional properties
Unconstrained

I. Concave

DTLZ2 12
DTLZ3 12 Multimodal
DTLZ4 12 Biased
DTLZ5 12 Degenerated
DTLZ6 12 Degenerated, Biased

UF8 30 Complex PS
UF10 30 Complex PS
WFG4 24 Multimodal
WFG5 24 Deceptive
WFG6 24 Non-separable
WFG7 24 Biased
WFG8 24 Biased, Non-separable
WFG9 24 Biased, Non-separable, Deceptive

IV. Linear/Mixed
DTLZ1 7 Linear, Multimodal
WFG1 24 Biased, Mixed
WFG3 24 Non-separable, Degenerated, Linear

V. Discontinuous
DTLZ7 22 Mixed, Multimodal

UF9 30 Complex PS
WFG2 24 Convex, Non-Separable

VI. Imbalanced

MOP6 10 Linear
MOP7 10 Concave
IMB4 10 Linear
IMB5 10 Concave
IMB6 10 Linear
IMB10 10 Linear

Constrained

VII. Discontinuous

DTLZ8 30 Mixed, Degenerated, Biased
DTLZ9 30 Concave, Degenerated

CF8 10 Concave, Degenerated, Complex PS
CF9 10 Concave, Complex PS

CF10 10 Concave, Complex PS
IX. Imbalanced IMB14 10 Linear

X. Diversity-hard
DAS-CMOP7(5) 30 Linear, Degenerated, Discontinuous
DAS-CMOP8(5) 30 Concave, Discontinuous
DAS-CMOP9(5) 30 Concave, Discontinuous, Biased

XI. Feasibility-hard
DAS-CMOP7(6) 30 Linear, Degenerated, Discontinuous
DAS-CMOP8(6) 30 Concave, Discontinuous
DAS-CMOP9(6) 30 Concave, Discontinuous, Biased

XII.Convergence-hard
DAS-CMOP7(7) 30 Linear, Degenerated, Discontinuous
DAS-CMOP8(7) 30 Concave, Discontinuous
DAS-CMOP9(7) 30 Concave, Discontinuous, Biased

d denotes the number of decision variables. The same categories are utilised as for the two-objective cases.
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