
A. Gradient issues with Physics Informed Neural Networks 

PINNs, as any neural network, are not immune to standard neural network problems. Some of 

these are nonetheless exacerbated. The first of them was indicated by Raissi et al. (2020) - 

calculating a derivative of outputs with respect to inputs requires a full pass through the 

computational graph. This is especially serious for higher order derivatives which roughly double 

the size of the network with each additional order of derivative. 

Another problem with PINNs, highlighted by Wang et al. (2020), are PINN gradient 

pathologies. The losses corresponding to the equations, containing the derivatives of the field 

functions, are calculated by multiple passes through the network. Thus, on average, the physics 

losses are an order of magnitude higher than the supervised losses, which, consequently, can cause 

the network to disregard any given data, producing a solution that obeys the governing physics but 

is, nonetheless, wrong. Wang et al. (2020) proposed a procedure which can successfully counter 

the phenomenon. Their solution is to scale the PINN data losses by the ratio of maximum absolute 

value of the PDE loss’ gradients to the average absolute value of the data losses’ gradients: 
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where each ,D   corresponds to a single data loss component (e.g. error between u  measurements 

and PINN predictions) and each 
,
 corresponds to a physics loss from a single equation of the 

pde system (e.g. mass conservation residual). 

Our study uses an alternative solution. Instead of using gradient information to scale the 

losses, the values of the losses itself can be used to regularise the imbalance. The new scaling 

factor for a given data or boundary condition loss would be the ratio of that loss to the average 

value of PDE losses: 
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This ensures that each of the data losses will be additionally penalised if it is too large when 

compared with the equation losses. Furthermore, to ensure stability, saturation function max( ,1)x  

and momentum mechanism is added to the loss scaling, giving, for 1k  ’th iteration: 
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where   is the momentum parameter that can be set to a value of around 0.9. 

 

B. Distribution of data points for the PINN interpolations. 

data resolution x y   bottom left corner point 

coordinates 

upper right corner point 

coordinates 

0.02 0.02  ( , ) = ( 1, 1.5)x y    ( , ) = (3,1.5)x y  

0.05 0.05  ( , ) = ( 1, 1.5)x y    ( , ) = (3,1.5)x y  

0.10 0.10  ( , ) = ( 1, 1.5)x y    ( , ) = (3,1.5)x y  

0.25 0.25  ( , ) = ( 1, 1.5)x y    ( , ) = (3,1.5)x y  

0.50 0.50  ( , ) = ( 1, 1.25)x y    ( , ) = (3,1.25)x y  

0.60 0.60  ( , ) = ( 0.4, 1.2)x y    ( , ) = (3,1.2)x y  

0.70 0.70  ( , ) = ( 0.75, 1.4)x y    ( , ) = (2.75,1.4)x y  

1.00 1.00  ( , ) = ( 1, 1.5)x y    ( , ) = (3,1.5)x y  

Table 6. Data grid resolutions for interpolations along with coordinates of the bottom left and 

upper right corners of the data grid 



 

 

Figure 12. Data grid points for various data grid densities plotted over true u  velocity field. 

 

B.1. Practical range of resolutions for data from PIV experiments 

The fine data spacing is 0.02 in both x  and y  directions. We will assume that during a PIV 



experiment that we need 16 pixels in each direction to calculate displacement of particles, and 

velocity. Then, for each single velocity vector that gives us (3/ 0.02 1) 16 = 2416   pixels to cover 

the 3 unit long height of the domain and (4 / 0.02 1) 3216   pixels for the 4 unit long width of the 

domain. This could be achieved with a 8 megapixel camera for the experimental PIV setup. 

Furthermore, using averaged data it is possible to combine PIV images from different experiments 

which again might be leveraged to increase the size of the input velocity data. 

 


