
Appendix A  Gradients for Linear Approximation Cases 

As an illustration, we consider the case where a linear approximation is adopted as the physics-

based model, i.e., NN( ) = ( )f f z Az z , and the decoder 
p  is simply an identity matrix of 

appropriate dimension. Following the derivation of gradients with repect to   and 0( )tz  given by [46], 

the gradients under the physics-informed regime can be expressed as the solution of the following 

differential equation: 
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a . Then the gradients can be 

approximately given by 

 
aug 0 aug 1 aug NN 1( ) = ( )exp( ) ( ),tt t F t a a A  (A2) 

where the first term is an approximate solution obtained from linear physics-based portion of A1 and 

the second term NNF  accounts for the difference between the linear approximation and the true 

solution. Suppose the training time steps are 0 1= , ,..., Nt t t t , then we can repeat the process and the 

gradient obtained through back-propagation is: 
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The first term of the R.H.S. is brought by the linearized physics-based model and it can be directly back-

propagated, while only the discrepancy terms NN=1
( )

N

ii
F t  need to be estimated, which makes the 

estimated gradients also an approximation to the real ones. As a result from this, the combined 

gradients are restricted in a regime that is closer to the true function’s gradients. 

 


