Appendices

A. Improved fail-safe SPO results

Table 8. Optimal improved-fail-safe sensor distributions obtained by a GA combined with the DFIM weighted by the ADPR.

No. of sensors	Sensor number	Fail-safe fitness	Fitness
4	$5,12,28^{b}, 36$	$2.707 \mathrm{e}-08$	$2.384 \mathrm{e}-07$
5	$24,28,31,34,36$	$6.195 \mathrm{e}-07$	$3.170 \mathrm{e}-06$
6	$4,24,28,34,35,36^{a}$	$1.781 \mathrm{e}-06$	$6.260 \mathrm{e}-06$
7	$4,12,24,28,34,35,36$	$5.047 \mathrm{e}-06$	$1.266 \mathrm{e}-05$
8	$12,16,24,28,31,34,35,36$	$8.679 \mathrm{e}-06$	$1.924 \mathrm{e}-05$
The failure of a sensor at the position marked in blue will result in the worst fitness.			
$\quad b$			
From a fail-safe perspective, the replaceable sensor location is marked in magenta.			

Table 9. Optimal improved-fail-safe sensor distributions obtained by an GA combined with the SSC.

No. of sensors	Sensor number	Fail-safe fitness	Fitness
2	3,34	0.363	0.781
3	$8,27,34$	0.756	1.393
4	$3,8,30,34$	1.164	1.504
5	$3,8,27,30,34$	1.504	1.719
6	$1,15,18,25,30,34$	1.890	2.225
7	$1,3,17,18,25,30,34$	2.083	2.327
8	$1,4,17,18,25,26,30,34$	2.359	2.513

Table 10. Optimal improved-fail-safe sensor distributions obtained by an GA combined with the SSC weighted by the ADPR.

No. of sensors	Sensor number	Fail-safe fitness	Fitness
2	24,36	0.144	1.098
3	$12,24,36$	0.776	2.542
4	$3,12,24,36$	1.918	4.262
5	$3,12,16,24,36$	2.980	5.571
6	$3,12,24,28,32,36$	4.100	6.917
7	$3,12,21,24,28,32,36$	4.995	7.634
8	$11,12,23,24,28,29,33,36$	5.903	9.018

B. Improved fail-safe with redundancy SPO results

Table 11. Optimal improved-fail-safe sensor distributions with redundancy obtained by a GA combined with the DFIM weighted by the ADPR.

No. of sensors	Sensor number	Fail-safe fitness	Fitness
5	$28,31,34,36(36)^{c}$	$1.812 \mathrm{e}-07$	$9.313 \mathrm{e}-07$
6	$24,28(28), 34,35,36^{d}$	$9.469 \mathrm{e}-07$	$3.382 \mathrm{e}-06$
7	$12,16,24,28,34(34), 36$	$2.575 \mathrm{e}-06$	$6.4660 \mathrm{e}-06$
8	$4,12,16,24,34(34), 35,36$	$5.277 \mathrm{e}-06$	$1.181 \mathrm{e}-05$

${ }^{c}$ Sensors in parentheses are redundant sensors placed to avoid the worst fitness.
${ }^{d}$ The failure of a sensor at the position marked in green will result in the second worst fitness.

Table 12. Optimal improved-fail-safe sensor distributions with redundancy obtained by a $G A$ combined with the SSC.

No. of sensors	Sensor number	Fail-safe fitness	Fitness
3	$8,34(34)$	0.379	0.943
4	$8(8), 21,34$	0.834	0.963
5	$3,8,27,34(34)$	1.209	1.675
6	$3,8,27(27), 30,34$	1.567	1.719
7	$3,15(15), 17,18,26,32$	1.911	2.235
8	$3,5,15(15), 17,18,26,32$	2.217	2.391

Table 13. Optimal improved-fail-safe sensor distributions with redundancy obtained by a GA combined with the SSC weighted by the ADPR.

No. of sensors	Sensor number	Fail-safe fitness	Fitness
3	$12,24(24)$	0.268	1.296
4	$12,24(24), 36$	1.098	2.542
5	$12,16,24(24), 36$	2.240	3.798
6	$1,3,12(12), 24,36$	3.125	5.098
7	$3,12,24(24), 28,32,36$	4.272	6.917
8	$3,12,24(24), 28,32,33,36$	5.207	7.870

