Supporting Document S1

Calculation of the total area of a multi-crop (MC) plot

Let us take the land area of design A (Fig. 1). Let us first calculate the area occupied by brinjal (BR) plants:

All BR saplings, like all other species, are planted in a single column, 3 times over (col. 1,8 and 15). The number of BR plants in each of these 3 columns is 21 (1 in each row), and the gaps on all 4 sides of each BR plant is $G_{\mathrm{BR}}=40 \mathrm{~cm}$. We leave an equal amount of gap $\left(\mathrm{G}_{\mathrm{BR}}\right)$ beyond each border row. Therefore, the area in each column is $2 \mathrm{G}_{\mathrm{BR}}{ }^{2}(\mathrm{R}+1)$,
and for the 3 repeated columns of $B R$ in the plot,

$$
\begin{equation*}
2 \mathrm{G}_{\mathrm{BR}}^{2}(\mathrm{R}+1) \mathrm{C}_{\mathrm{BR}} \tag{Eq.S1}
\end{equation*}
$$

which translates to $2 \times(80 \mathrm{~cm} \times 80 \mathrm{~cm})(21+1$ rows $) \times 3 \mathrm{~m}^{2,}$, where C_{BR} is the number of columns bearing BR in each row, which is uniformly designed to be 3 .

However, the spacing ($\mathrm{G}_{i}=25 \mathrm{~cm}$) on all sides of each non-BR plant in each row needs to be less by 1 for each column of crop i, because on one side this space is subsumed in $\mathrm{G}_{B R}=40 \mathrm{~cm}$ for each neighbouring BR plant. We also leave an extra space of 25 cm on the last $\left(21^{\text {st }}\right)$ column. Therefore, the total area planted to all non-BR crops $S(=6)$ is :

$$
\begin{equation*}
\sum_{i=1}^{6} A_{i}=(\mathrm{S}-1) \mathrm{G}_{i}^{2} \mathrm{C}_{\mathrm{i}}(\mathrm{R}+1)+\mathrm{G}_{i}^{2}(\mathrm{R}+1)=\mathrm{G}_{i}^{2}(\mathrm{R}+1)\left[1+\mathrm{C}_{i}(\mathrm{~S}-1)\right] \tag{Eq.S2}
\end{equation*}
$$

Combining Eq. S 1 and S 2 , and because $\mathrm{C}_{\mathrm{BR}}=\mathrm{C}_{i \neq \mathrm{BR}}=3$, we obtain the total area sown to all (BR and 6 nonBR) crops :

$$
\begin{equation*}
\mathrm{A}_{\mathrm{BR}}+\sum_{i=1}^{6} A_{i(i \neq \mathrm{BR})}=2 \mathrm{G}_{\mathrm{BR}^{2} \mathrm{C}_{i}(\mathrm{R}+1)+\mathrm{G}_{i}^{2}(\mathrm{R}+1)\left[1+\mathrm{C}_{i}(\mathrm{~S}-1)\right]} \tag{Eq.S3}
\end{equation*}
$$

Defining $\mathrm{X}=2 \mathrm{C}_{i}$ and $\mathrm{Y}=\left[1+\mathrm{C}_{i}(\mathrm{~S}-1)\right]$, the eqn. S 3 can be rewritten as a general equation

$$
\begin{equation*}
\sum_{i=1}^{7} A_{i}=\mathrm{G}_{i}^{2}(\mathrm{R}+1)[\mathrm{X}+\mathrm{Y}] \tag{Eq.S4}
\end{equation*}
$$

where $\mathrm{X}=2 \mathrm{C}_{i} ; \mathrm{Y}=0$; and $\mathrm{G}_{i}=40 \mathrm{~cm}$
for $i=\mathrm{BR}$
$\mathrm{X}=0 ; \mathrm{Y}=\left[1+\mathrm{C}_{i}(\mathrm{~S}-1)\right] ;$ and $\mathrm{G}_{i}=25 \mathrm{~cm}$
for $i \neq \mathrm{BR}$

Because all designs of MC plots are planted with the same number of crop species, and identical number of plants (assuming zero mortality) with the same crop-specific plant-to-plant spacing, Eq. S4 is applicable to all designs of MC plots. In cases of mortality of crop i in a plot, the actual area covered by the surviving individuals (N_{i}) is $A A_{i}=A_{i} N_{i} / \mathrm{C}_{i} \mathrm{R}$, as described in Eq. 1 in the main text.

