Supporting Document S1

Calculation of the total area of a multi-crop (MC) plot

Let us take the land area of design A (Fig. 1). Let us first calculate the area occupied by brinjal (BR) plants:

All BR saplings, like all other species, are planted in a single column, 3 times over (col. 1, 8 and 15). The number of BR plants in each of these 3 columns is 21 (1 in each row), and the gaps on all 4 sides of each BR plant is \(G_{BR} = 40 \text{ cm} \). We leave an equal amount of gap \((G_{BR}) \) beyond each border row. Therefore, the area in each column is \(2G_{BR}^2(R+1) \), and for the 3 repeated columns of BR in the plot, \(2G_{BR}^2(R+1)C_{BR} \) (Eq. S1),

and for the 3 repeated columns of BR in the plot,

\[2G_{BR}^2(R+1)C_{BR} \] (Eq. S1),

which translates to \(2 \times (80 \text{ cm} \times 80 \text{ cm}) \times (21 + 1 \text{ rows}) \times 3 \text{ m}^2 \), where \(C_{BR} \) is the number of columns bearing BR in each row, which is uniformly designed to be 3.

However, the spacing \((G_i = 25 \text{ cm}) \) on all sides of each non-BR plant in each row needs to be less by 1 for each column of crop \(i \), because on one side this space is subsumed in \(G_{BR} = 40 \text{ cm} \) for each neighbouring BR plant. We also leave an extra space of 25 cm on the last (21^{st}) column. Therefore, the total area planted to all non-BR crops \(S (= 6) \) is :

\[\sum_{i=1}^{6} A_i = (S-1)G_i^2C_i(R+1) + G_i^2(R+1)[1 + C_i(S-1)] \] (Eq. S2)

Combining Eq. S1 and S2, and because \(C_{BR} = C_{i \neq BR} = 3 \), we obtain the total area sown to all (BR and 6 non-BR) crops :

\[A_{BR} + \sum_{i=1}^{6} A_{i \neq BR} = 2G_{BR}^2C_i(R+1) + G_i^2(R+1)[1 + C_i(S-1)] \] (Eq. S3)

Defining \(X = 2C_i \) and \(Y = [1 + C_i(S-1)] \), the eqn. S3 can be rewritten as a general equation

\[\sum_{i=1}^{7} A_i = G_i^2(R+1)[X + Y] \] (Eq. S4)

where \(X = 2C_i ; \ Y = 0 \); and \(G_i = 40 \text{ cm} \) for \(i = BR \)

\(X = 0; \ Y = [1 + C_i(S-1)]; \) and \(G_i = 25 \text{ cm} \) for \(i \neq BR \)

Because all designs of MC plots are planted with the same number of crop species, and identical number of plants (assuming zero mortality) with the same crop-specific plant-to-plant spacing, Eq. S4 is applicable to all designs of MC plots. In cases of mortality of crop \(i \) in a plot, the actual area covered by the surviving individuals \((N_i) \) is \(AA_i = A_i\frac{N_i}{C_iR} \), as described in Eq. 1 in the main text.