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A. Analysis of level two Hodge structures

This appendix contains proofs of the theorems in [HR20]. The general argument is
outlined in §A.1. References to sections/equations/tables/propositions in this appendix all
begin with letters (“A” or “B”); while references to the main document [HR20] begin with
numbers (eg. Table 3.1 may be found in the main document). Theorems 4.1 and 4.3 of
[HR20] are proved simultaneously in §§A.2–A.7; Theorem 4.4 of [HR20] is proved in §A.8;
and Theorem 4.6 of [HR20] is proved in §A.9.

A.1. Outline of the arguments. The proofs of Theorems 4.1 and 4.3 proceed by con-
sidering each of the cases listed in [HR20, Table 3.1]. Given the pair (gC, E) it suffices to
determine when there exists an irreducible gC–representation Uµ of highest weight µ ∈ h∗,
and c ∈ Q satisfying the conditions of Theorem 3.1 for the specified hφ. First note that Uµ
has either two or three nontrivial E–eigenvalues; equivalently (Remark 2.21),

(A.1) (µ+ µ∗)(E) ∈ {1, 2} .
This gives us the following three possibilities (cf. §§2.5 and 2.7):

(a) If Uµ is real, then c = 0 (§2.7(a)) and it is necessary and sufficient that the E–eigenspace
decomposition (equivalently, the Hodge decomposition) of VC = Uµ be

V 2,0 ⊕ V 1,1 ⊕ V 0,2 = U1 ⊕ U0 ⊕ U−1 ,
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2 HAN AND ROBLES

with dimU±1 = h2,0φ ∈ {1, 2}. In particular, µ(E) = 1.

(b) If Uµ is complex or quaternionic, so that VC = Uµ⊕U∗µ, and there are three nontrivial
E–eigenvalues, so that the E–eigenspace decompositions are

Uµ = Uµ(E) ⊕ Uµ(E)−1 ⊕ Uµ(E)−2
U∗µ = U2−µ(E) ⊕ U1−µ(E) ⊕ U−µ(E) .

Then we are looking for c ∈ Q so that

VC V 2,0 V 1,1 V 0,2

Uµ Uµ(E) Uµ(E)−1 Uµ(E)−2
U∗µ U2−µ(E) U1−µ(E) U−µ(E) .

Equivalently, µ(E) + c = 1 and 2− µ(E)− c = 1. That is,

c = 1− µ(E) .

Note that each of the eigenspaces U±µ(E) and U±(µ(E)−2) must have dimension one, and

we have h2,0 = 2. (In particular, this case will not appear in Theorem 4.1.)

(c) Suppose Uµ is complex, so that VC = Uµ ⊕ U∗µ, and there are two nontrivial E–
eigenvalues, so that the E–eigenspace decompositions are

Uµ = Uµ(E) ⊕ Uµ(E)−1
U∗µ = U∗1−µ(E) ⊕ U

∗
−µ(E) .

We are looking for c ∈ Q so that either

VC V 2,0 V 1,1 V 0,2

Uµ Uµ(E) Uµ(E)−1
U∗µ U∗1−µ(E) U∗−µ(E)

.

or

VC V 2,0 V 1,1 V 0,2

Uµ Uµ(E) Uµ(E)−1
U∗µ U∗1−µ(E) U∗−µ(E)

.

Equivalently, either

1 = µ(E) + c and dimC Uµ(E) = h2,0φ ∈ {1, 2} ,

or

µ(E) = −c and dimC U
∗
1−µ(E) = h2,0φ ∈ {1, 2} .

The proofs of Theorems 4.1 and 4.3 now proceed by applying the observations of this section
to each pair (gC, E) corresponding to a row of Table 3.1.

We now turn to the simultaneous proofs of Theorems 4.1 and 4.3 in §§A.2–A.7, followed
by the proofs of Theorems 4.4 and 4.6 in §A.8 and §A.9, respectively.
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A.2. Grassmannian Hodge domains. We begin with the first row of Table 3.1 and the
pair (gC, E) = (sl(a+ b,C) , Aa).1

The standard representation Uω1 = Ca+b of gC = sla+bC admits a decomposition Ca+b =
A⊕B with dimA = a and dimB = b and such that A is an eigenspace of E with eigenvalue
b/(a+ b), and B is an eigenspace with eigenvalue −a/(a+ b). It will be helpful to note that
the E–eigenspace decomposition of

∧iCa+b is

(A.2)
∧i(A⊕B) =

⊕
α+β=i

(
∧αA)⊗ (

∧βB) .

Fix bases {e1, . . . , ea} and {ea+1, . . . , ea+b} of A and B, respectively.
We assume throughout §A.2 that a + b = i + j = k + ` = r + 1. Consulting §A.1 and

§B.2.1, we see that the pair (µ, E = Aa) must be one of the following:

(i) a = 1 and µ = ωi, any 1 ≤ i ≤ r;
(ii) a = 1 and µ = ωi + ωk, any 1 ≤ i, k ≤ r;
(iii) a = 2 and µ = ωi, any 2 ≤ i ≤ r − 1;

(iv) µ ∈ {ω1, 2ω1}, any 2 ≤ a ≤ r − 1;

(v) µ = ω2 and any 2 ≤ a ≤ r − 1.

(This list suppresses some cases that are essentially symmetric with those already listed.
For example E = Ar and µ = ωi is symmetric with (i).) We proceed to consider each of
these five cases.

(i) Consulting (A.2) we see that

Uωi =
∧i(A⊕B) =

(
A⊗

∧i−1B) ⊕ (∧iB) .
These eigenspaces have dimensions

((
r
i−1
)
,
(
r
i

))
. In order to realize a Hodge representation

with h2,0φ ∈ {1, 2}, one of these dimensions must be 1 or 2.

The first dimension will be one if and only if r = 1 (which forces i = 1). But in this
case the representation Uµ is real, and so the resulting Hodge representation will be weight
n = 1, not the desired weight n = 2.

The second dimension will be one if and only if i = r. Then the dimensions of the
E–eigenspaces of Uωr and U∗ωr

= Uω1 are (r, 1) and (1, r), respectively. The eigenvalue for∧rB ⊂ Uωr is −r/(r + 1). So setting c = −1/(r + 1) gives us a Hodge representation with
eigenvalues hφ = (1, 2r, 1), yielding Theorem 4.1(ii).

The first dimension will be two if and only if i = r = 2. In this case the dimensions
are (2, 1), and Uµ = Uω2 is complex with U∗µ = Uω1 = C3. The E–eigenspaces of U∗µ have
dimensions (1, 2). We have µ(E) = 1/3. Setting c = −1/3 yields a special case of Theorem
4.1(ii), and setting c = 2/3 yields a special case of Theorem 4.3(ii) (Remark 3.4).

The second dimension will be two if and only if r = 2 and i = 1. In this case the
dimensions are (1, 2), and Uµ = Uω1 = C3 is complex with U∗µ = Uω2 =

∧2C3. The E–
eigenspaces of U∗µ have dimensions (2, 1). We have µ(E) = 2/3. Setting c = 1/3 yields a

1Despite what the reader might anticipate, this case/row is the most tedious and painstaking to work
through. This is essentially due to the numerically more complicated relationship between the roots (dual
to the basis Aa for the grading elements) and the weights (i.e. the complexity in the Cartan matrix) for
gC = sl(a + b,C). The other cases §§A.3–A.7 are easier to analyze.
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special case of Theorem 4.1(ii) (Remark 3.4). Setting c = −2/3 yields a special case of
Theorem 4.3(ii).

(ii) We have Uωi+ωk
⊂ (

∧iCr+1) ⊗ (
∧kCr+1), with the latter having three distinct

E–eigenspaces

(
∧iCr+1)⊗ (

∧kCr+1) =
(
A⊗A⊗ (

∧i−1B)⊗ (
∧k−1B)

)
⊕
{ (

A⊗ (
∧i−1B)⊗ (

∧kB)
)(

A⊗ (
∧iB)⊗ (

∧k−1B)
)

⊕
(

(
∧iB)⊗ (

∧kB)
)

The product (e1∧· · ·∧ei)⊗ (e1∧· · ·∧ek) ∈ A⊗A⊗ (
∧i−1B)⊗ (

∧k−1B) is a highest weight
vector of Uωi+ωk

. Without loss of generality i ≤ k. The products

(e1 ∧ · · · ∧ ei)⊗ (e1 ∧ · · · ∧ eh) , k ≤ h ≤ r + 1 ,

are all elements of the first eigenspace Uµ(E) ⊂ A ⊗ A ⊗ (
∧i−1B) ⊗ (

∧k−1B). Because this

eigenspace may have dimension at most h2,0φ ≤ 2, we see that k = r (and the eigenspace has

dimension at least 2). Likewise

(e1 ∧ · · · ∧ eh)⊗ (e1 ∧ · · · ∧ er) , i ≤ h ≤ r ,

are also elements of this eigenspace; and dimension/Hodge number considerations again
force i = k = r. The representation U2ωr is complex, unless r = 1; if complex, then the

associated Hodge representation has h2,0φ > 2, which is too large. So we must have r = 1,

in which case VC = U2ω1 = Sym2C2 is real and we have hφ = (1, 1, 1). However, under the
isomorphism sl2C ' so(3,C), this is a special case of Theorem 4.1(i).

(iii) In this case we have E–eigenspace decomposition

Uωi =
∧i(C2+b) =

(
(
∧2A)⊗ (

∧i−2B)
)
⊕
(
A⊗ (

∧i−1B)
)
⊕ (

∧iB) .

The condition that the first and third eigenspaces (
∧2A)⊗(

∧i−2B) and
∧iB have dimensions

1 or 2 forces i = b = 2. Then Uµ = Uω1 is self-dual and real. This is a special case of Theorem
4.1(i) under the isomorphism sl(4,C) ' so(6,C).

(iv) If µ = ω1, then Uµ = Ca+b = A ⊕ B is the standard representation. Recalling
the discussion at the beginning of this section we see that we must have either a = 2 or
b = r + 1 − a = 2. Taking c = 2/(r + 1) if a = 2, and c = −2/(r + 1) if b = 2, yields
hφ = (2, 2r − 2, 2) and Theorem 4.3(ii) (Remark 3.4).

If µ = 2ω1, then Uµ = Sym2Ca+b = (Sym2A) ⊕ (A ⊗ B) ⊕ (Sym2B). In this case

dimC Sym2A ≥ 3 > h2,0φ is too large.

(v) If µ = ω2, then Uµ =
∧2Ca+b = (

∧2A) ⊕ (A ⊗ B) ⊕ (
∧2B). The first and third

eigenspaces
∧2A and

∧2B are constrained to have dimension at most h2,0φ ≤ 2. This forces

a = b = 2. In this case Uµ is real and we have Hodge numbers (1, 4, 1). This is the special
case of Theorem 4.1(i) that we encountered above in part (iii) of the proof.
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A.3. Quadric hypersurface Hodge domains. We next consider the second row of Table
3.1 and the pair (gC, E) = (so(d + 2,C) , A1). Here we may assume that either d = 3 or
d ≥ 5 (else we are in the case considered in §A.2).

A.3.1. Period domains. If µ = ω1, so that Uµ = Cd+2 is the standard representation, and

real with respect to (gC, E), then VC = Uω1 has eigenspace decomposition C⊕ Cd ⊕ C with
eigenvalues (1, d, 1). Of course, in this case the Hodge domain is the period domain D
parameterizing Q–polarized Hodge structures with Hodge numbers h = (1, d, 1).

A.3.2. Exterior powers. For the analysis that follows, it will be helpful to make the following
observations about exterior powers of the standard representation. Given 2 ≤ i ≤ r−1 ≤ 1

2d,

the representation
∧iCd+2 is real, defines a Hodge representation, and has E–eigenspace

decomposition ∧i(C⊕ Cd ⊕ C) =
(
C⊗ (

∧i−1Cd))
⊕
(

(C⊗ (
∧i−2Cd)⊗ C) ⊕ (

∧iCd))
⊕
(

(
∧i−1Cd)⊗ C

)
.

The dimension h2,0φ of the first eigenspace C ⊗ (
∧i−1Cd) is

(
d
i−1
)
. We have h2,0φ ∈ {1, 2} if

and only if i = 2 and d = 2. But we are assuming d ≥ 3.

We assume µ 6= ω1 for the remainder of §A.3. (The case µ = ω1 is treated in §A.3.1.)
The representation theory of gC = so(d+ 2,C) depends on the parity of d; we begin with d
odd.

A.3.3. The case of d odd. Assume d ≡ 1 mod 2. Consulting (A.1) and §B.2.2, we see that
either µ = ωi with 2 ≤ i ≤ r − 1, or µ ∈ {ωr, 2ωr}. In the first case we have Uωi =

∧iCd+2,
which is treated in §A.3.2.

• The representation U2ωr =
∧rUω1 =

∧rCd+2 has E–eigenspace decomposition

U2ωr =
(
C⊗ (

∧r−1Cd)) ⊕ ∧rCd ⊕ (
(
∧r−1Cd)⊗ C

)
.

The resulting Hodge representation has h2,0φ ≥ dimC
∧r−1Cd ≥ 3, which is too large.

• Likewise, the dimensions (2r−1, 2r−1) of the E–eigenspaces in the spinor representation
Uωr are to large, unless r = 2. But in this case that representation is real, and the Hodge
representation is of weight 1 (§A.1(a)).

A.3.4. The case of d even. Assume d ≡ 0 mod 2. Consulting (A.1) and §B.2.2, we see that
either µ = ωi with 2 ≤ i ≤ r − 2, or µ ∈ {ωr−1, ωr} ∪ {2ωr−1, ωr−1 + ωr, 2ωr}. In the first
case we have Uωi =

∧iCd+2, which is treated in §A.3.2. Likewise, Uωr−1+ωr =
∧r−1Cd+2 is

treated in §A.3.2.

• The cases µ = ωr−1 and µ = ωr are symmetric, so we treat µ = ωr here. The
half-spin representation Uωr decomposes into two E–eigenspaces of dimensions (2r−2, 2r−2).
Since r ≥ 4, these dimensions are too large to realize a Hodge representation (as in §A.1)

with h2,0φ ∈ {1, 2}.
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• Similarly the cases µ = 2ωr−1 and µ = 2ωr are symmetric, and we treat µ = 2ωr here.
We have

∧rCd+2 =
∧rC2r = U2ωr−1⊕U2ωr . The representation U2ωr decomposes into three

E–eigenspaces, the first and last of which have dimension 1
2

(
2r−2
r−1
)
. Again, since r ≥ 4, these

dimensions are too large to realize a Hodge representation (as in §A.1) with h2,0φ ∈ {1, 2}.

A.4. Lagrangian grassmannian Hodge domains. Consider the third row of Table 3.1
and the pair (gC, E) = (sp(2r,C) , Ar). Here we may assume r ≥ 3 (else we are in the
case considered in §A.3.) Consulting (A.1), §A.1(a) and §B.2.3, we see that µ must be
one of 2ω1, ω2; in each case UC is real. The E–eigenspace decomposition of the standard
representation Uω1 = C2r is Cr ⊕ Cr; in particular, the dimensions of the eigenspaces are
(r, r).

• In the case that µ = 2ω1, the representation U2ω1 = Sym2Cr has E–eigenspace
decomposition (Sym2Cr)⊕ (Cr → Cr)⊕ (Sym2Cr). The dimensions of the eigenspaces are

(12r(r + 1) , r2 , 1
2r(r + 1)). The requirement 1

2r(r + 1) = h2,0φ ∈ {1, 2} forces r = 1, a

contradiction.

• In the case that µ = ω2, we have Uω2⊕spanC{Q} =
∧2C2r, and the dimensions of the

E–eigenspaces are (12r(r− 1) , r2− 1 , 1
2r(r− 1)). The requirement 1

2r(r− 1) = h2,0φ ∈ {1, 2}
forces r = 2, yielding hφ = (1, 3, 1). This case is covered by Theorem 4.1(i).

A.5. Spinor Hodge domains. Let (gC, E) = (so(2r,C) , Ar). We may assume without
loss of generality that r ≥ 4. Consulting §A.1 and §B.2.4, we see that µ is restricted to be
one:

(i) µ ∈ {ω1, 2ω1, ω2}, any r ≥ 4;

(ii) r = 4 and ω ∈ {ω3, ω1 + ω3, 2ω3, ω4};
(iii) r = 5, µ ∈ {ω4, ω5};
(iv) r = 6, µ = ω5.

We consider each of these cases below.

(i) If µ = ω1, then Uµ is the standard representation C2r, with E–eigenspace de-
composition Cr ⊕ Cr. The dimensions (r, r) of the E–eigenspaces are too large (r ≥
4 > 2 ≥ h1,1φ ). If µ = 2ω1, then U2ω1 ⊕ spanC{Q} = Sym2C2r, and the dimensions

(12r(r + 1), r2 − 1, 12r(r + 1)) of the E–eigenspaces are again too large. If µ = ω2, then

Uω2 =
∧2C2r = (

∧2Cr)⊕ (Cr ⊗Cr)⊕ (
∧2Cr) and the dimensions (12r(r − 1), r2, 12r(r − 1))

are again too large.

(ii) Now suppose that r = 4. Then the dimensions of the E–eigenspaces for the represen-
tations in (ii) are (8, 8), (15, 26, 15), (10, 15, 10) and (1, 6, 1), respectively. The requirement

that h1,1φ ∈ {1, 2}, restricts us to µ = ω4. In this case Uµ is real, and we have Hodge num-

bers hφ = (1, 6, 1). This is a special case of Theorem 4.1(i) under an outer automorphism
(triality) of so(8,C) that permutes the weight {ω1, ω3, ω4}. of

(iii) Next take r = 5. The E–eigenspaces of Uµ4 and Uω5 have dimensions (5, 10, 1) and
(1, 10, 5), respectively. These are too large for our desired Hodge numbers hφ.
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(iv) Finally, we consider r = 6 and µ = ω5. In this case Uω5 is quaternionic, and the
the E–eigenspaces have dimensions (6, 20, 6) so that the Hodge numbers of the associated
Hodge representation VR = Uω5 ⊕ Uω5 are h = (12, 40, 12); again these are too large.

A.6. Cayley Hodge domains. Let (gC, E) = (e6 , A
6). Consulting §A.1 and §B.2.5, we

see that µ is restricted to be one of {ω1 , ω2 , ω6}. In each case (µ + µ∗)(E) = 2, so that
Uµ has three nontrivial eigenvalues. The dimensions of the E–eigenspaces are (10, 16, 1),

(16, 46, 16) and (1, 16, 10), respectively. In each case the first/last is too large (> 2 ≥ h2,0φ )

to yield a Hodge representation satisfying the desired constraints.

A.7. Freudenthal Hodge domains. Let (gC, E) = (e7 , A
7). Consulting §A.1 and §B.2.6,

we see that µ is restricted to be the first fundamental weight µ = ω1. In this case the
representation Uω1 is real (with respect to gR) and we have Hodge numbers (27, 79, 27); the

first is too large (> 2 ≥ h2,0φ ).

This completes the proofs of Theorems 4.1 and 4.3.

A.8. When horizontality fails. In this section we prove Theorem 4.4. Computationally
the identification of Hodge subdomains for which horizontality fails entails dropping the
assumption that the grading element E is of the form listed in Table 3.1. Fortunately, the
period domain Dh parameterizing weight two, polarized Hodge structures with pg = 2 is
“close enough” to the classical Hermitian period domains (for principally polarized abelian
varieties and K3s) that we still have strong restrictions on the possible grading elements.
For this period domain the horizontal subbundle F−1(TDh) ⊂ TDh (also known as the
infinitesimal period relation (IPR)) is a contact subbundle.2

Any Hodge structure ϕ ∈ Dh induces a Hodge structure on the Lie algebra

g̃C := End(VC, Q) =
⊕
p

g̃p,−pϕ

of GR as in §2.2. Assuming the normalization of §2.3.4, the period domain Dh is Hermitian if
and only if g̃p,−pϕ = 0 for all |p| ≥ 2 (§3.2). And the IPR is contact (as in the present example)

if and only if g̃p,−pϕ = 0 for all |p| ≥ 3, and dim g̃2,−2ϕ = 1. Given a Hodge representation

(2.1), since the induced Hodge structure (2.11) on gR is given by gp,−pφ = gC ∩ g̃p,−pφ , it

follows (from the discussion of §3.2) that horizontality will fail for the Hodge subdomain
D ⊂ Dh if and only if the induced Hodge decomposition (2.9) is of the form

(A.3) gC = g2,−2φ ⊕ g1,−1φ ⊕ g0,0φ ⊕ g−1,1φ ⊕ g−2,2φ ,

with dimC g2,−2φ = 1. In this case the grading element is necessarily of the form listed in

Table A.1, cf. [ČS09, Proposition 3.2.4].3 (See [Kna02] for remaining notation.) For each of
the five exceptional cases, the compact dual Ď = G/Pi ↪→ PVωi is a rational homogeneous

2In particular, it has corank one. In the classical case that the period domain is Hermitian the subbundle
F−1(TDh) = TDh has corank zero. This is the sense in which the period domain Dh with h = (2, h1,1, 2)
is as “close as one can get to the classical/Hermitian case.” (We use the notation F−1(TDh) for the
horizontal subbundle because it is the first subspace in a natural filtration of the holomorphic tangent
bundle T Ďh ⊃ TDh.)

3Be aware there are typos in the table of that proposition.
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variety with isotropy group Pi the maximal parabolic subgroup associated with the grading
element E = Ai.

The proof of Theorem 4.4 now proceeds as outlined in §A.1, the single exception being
that we work with Table A.1 (not Table 3.1). As it is a straightforward variation on the
proof of Theorems 4.1 and 4.3, the proof is left to the reader; for easy reference, the relevant
eigenvalues are listed in §B.3.

A.9. When simplicity fails. Here we prove Theorem 4.6. To begin, suppose that gC =
g1 ⊕ g2 factors into the direct sum of two nontrivial ideals. Then U = Uµ is necessarily
of the form T1 ⊗ T2 with Ti an irreducible representation of gi of highest weight µi and
µ = µ1 + µ2. Likewise, E = E1 + E2, with Ei a grading element of gi. We write

(gC, E, µ) = (g1, E1, µ1) ⊕ (g2, E2, µ2) .

The Hodge representation will have weight/level n = 2 if and only if

1 = c + µ(E) = c + µ1(E1) + µ2(E2) .

Recall Remark 2.21, and note that e(µ, E) = e(µ1, E1) + e(µ2, E2) ≥ 2. The hypothesis
e(µ, E) = 2 forces e(µi, Ei) = 1 and gi to be simple.

Proposition A.4. Any semisimple algebra gR admitting a Hodge representation of level
n = 2 is either simple, or decomposes as the sum gR = g1,R ⊕ g2,R. In the latter case, the
triples (gi, Ei, µi) are necessarily one of:

(i) (slr+1C, Aa, ω1). The (standard) representation Uω1 = Cr+1 is real if r = 1, and
complex otherwise. The Aa–eigenspace decomposition is Cr+1 = Ca ⊕ Cr+1−a.

(ii) (slr+1C, A1, ωa). The representation Uωa =
∧aCr+1 is complex unless r + 1 = 2a,

in which case the representation is real if and only if a is odd. The A1–eigenspace
decomposition

∧aCr+1 = (C1⊗
∧a−1Cr)⊕(

∧aCr) is induced by that of Cr+1 = C⊕Cr.
(iii) (sp(2r,C), Ar, ω1). The (standard) representation Uω1 = C2r is real, and has Ar–

eigenspace decomposition C2r = Cr ⊕ Cr.
(iv) (so(2r,C), Ar, ω1). The (standard) representation Uω1 = C2r is quaternionic, and has

Ar–eigenspace decomposition C2r = Cr ⊕ Cr.

Table A.1. Data underlying irreducible contact Hodge domains

gC E Ď = GC/PE gR k
sl(r + 1,C) A1 + Ar Flag(1, r;Cr+1) su(2, r − 1) s(u(2)⊕ u(r − 1))
so(d+ 4,C) A2 GrQ(2,Cd+4) so(4, d) s(o(4)⊕ o(d))
sp(2r,C) A1 P2r−1 sp(1, r − 1) sp(1)⊕ sp(r − 1)

e6 A2 EII su(6)⊕ su(2)
e7 A1 EVI so(12)⊕ su(2)
e8 A8 EIX e7 ⊕ su(2)
f4 A1 FI sp(3)⊕ su(2)
g2 A2 G su(2)⊕ su(2) .
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(v) (so(2r + 1,C), A1, ωr). The (spin) representation Uωr is real if 1
2r(r − 1) is even, and

quaternionic otherwise. The A1–eigenspace decomposition is Uωr = C2r−1 ⊕ C2r−1
.

(vi) (so(2r,C), A1, ωr). The (half-spin) representation Uωr is complex if r is odd. If r
is even, then the representation is real if 1

2(r + 1)(r − 2) is even, and quaternionic

otherwise. The A1–eigenspace decomposition is Uωr = C2r−2 ⊕ C2r−2
.

Proof. The proof proceeds as outlined in §A.1 and demonstrated in §§A.2–A.7; details are
left to the reader. �

Let

Ti = Ti,µi(Ei) ⊕ Ti,µi(Ei)−1 = T ′i ⊕ T ′′i

be the Ei–eigenspace decompositions. Then the E–eigenspace decomposition

U = Uµ(E) ⊕ Uµ(E)−1 ⊕ Uµ(E)−2

is given by

Uµ(E) = T ′1 ⊗ T ′2

Uµ(E)−1 = (T ′1 ⊗ T ′′2 ) ⊕ (T ′′1 ⊕ T ′2)

Uµ(E)−2 = T ′′1 ⊗ T ′′2 .

So in order to obtain a Hodge representation (2.1) with pg = h2,0 = 2 we must have

1 ≤ dimT ′1 ⊗ T ′2 , dimT ′′1 ⊗ T ′′2 ≤ 2 ;

in particular,

dimTi ≤ 4 .

Modulo isomorphisms of (low-rank) Lie algebras, this leaves us with (i) and (iii) of Propo-
sition A.4. Theorem 4.6 now follows from the discussion of §A.1; details are left to the
reader.

B. Duality and eigenvalues for Hodge representations

For the computations of this paper it is useful to make some general observations about
the irreducible gC–representations Uµ that yield Hodge representations VR for each such
pair. (Those that follow are all elementary consequences of the representation theory of
complex, simple Lie algebras and may be found in any standard text.) Throughout we let
{ω1, . . . , ωr} ⊂ h∗ denote the fundamental weights of gC, and write the dominant integral
weight µ = µiωi with 0 ≤ µi ∈ Z.

Motivated by the considerations of §2.5, we define

Ti := 2
∑
j 6=i

Aj .
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B.1. Duality. Every representation Uµ of gC = so(2r+ 1,C), sp(2r,C), e7, e8, f4 and g2 is
self-dual.

(1) A gC = sl(r+1,C) representation Uµ is self-dual if and only if µi = µj for all i+j = r+1.

(2) A gC = so(2r,C) representation Uµ fails to be self-dual if and only if r is odd and
µr−1 6= µr.

(3) For gC = e6, we have ω∗1 = ω6, ω
∗
2 = ω2, ω

∗
3 = ω5, ω

∗
4 = ω4.

B.2. Hermitian symmetric domains. Let (gC, E) be the data underlying the irreducible
Hermitian symmetric domains (Table 3.1).

B.2.1. Grassmannian Hodge domains. With the notation in the first row of Table 3.1, we
have r + 1 = a + b. Given Remark 2.21 it will be useful to note that, given i + j = r + 1,
we have

(ωi + ωj)(A
a) =

 a , a ≤ i ≤ j ,
i , i ≤ a ≤ j ,
b , i ≤ j ≤ a ;

(ωi + ωj)(Ta) = 2ij − (ωi + ωj)(2 A
a) .

B.2.2. Quadric Hodge domains. Here (the second row of Table 3.1) the rank r of gC is given
by d+ 2 ∈ {2r, 2r + 1}.

In the case that d ≡ 1 mod 2, we have

ωi(A
1) =

{
1 , i ≤ r − 1 ,
1
2 , i = r .

ωi(T1) ≡ 0 mod 2 , i ≤ r − 1 ,

ωr(T1) = 1
2(r − 1)(r + 2) .

In the case that d ≡ 0 mod 2, we have

ωi(A
1) =

{
1 , i ≤ r − 2 ,
1
2 , i = r − 1, r .

ωi(T1) ≡ 0 mod 2 , i ≤ r − 2 ,

ωr−1(T1) = ωr(T1) = 1
2(r − 2)(r + 1) .

B.2.3. Lagrangian Grassmannian Hodge domains. We have

ωi(A
r) = 1

2 i ,

ωi(Tr) ≡ 0 mod 2 .

In particular, every representation Uµ is real (§2.5), with respect to the data (gC, E) =
(sp(2r,C) , Ar).

B.2.4. Spinor Hodge domains. We have

ωi(A
r) = 1

2 i , ωi(Tr) ≡ i mod 2 , i ≤ r − 2 ;
ωr−1(A

r) = 1
4(r − 2) , ωr−1(Tr) = 1

2(r2 − 2r + 2) ;
ωr(A

r) = 1
4r , ωr(Tr) = 1

2r(r − 2) .
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B.2.5. Cayley Hodge domains. We have

(ω1 + ω6)(A
6) = 2 , (ω1 + ω6)(T6) ≡ 0 mod 2 ,

ω2(A
6) = 1 , ω2(T6) ≡ 0 mod 2 ,

(ω3 + ω5)(A
6) = 3 , (ω3 + ω5)(T6) ≡ 0 mod 2 ,

ω4(A
6) = 2 , ω4(T6) ≡ 0 mod 2 .

In particular, every representation is either real or complex with respect to the data (gC, E) =
(e6, A

6).

B.2.6. Freudenthal Hodge domains. Every representation is self-dual. We have

ω1(A
7) = 1 , ω2(A

7) = 3/2 , ω3(A
7) = 2 , ω4(A

7) = 3 ,
ω5(A

7) = 5/2 , ω6(A
7) = 2 , ω7(A

7) = 3/2 ,

and ωi(T7) ≡ 0 mod 2, for all 1 ≤ i ≤ 7. So every representation is real (§2.5) with respect
to the data (gC, E) = (e7, A

7).

B.3. Contact domains. Let (gC, E) be the data underlying the irreducible contact Hodge
domains (Table A.1). (Duality of representations is as in §B.2 and so will not be repeated
here.)

B.3.1. Special Linear. We begin with the first row of Table A.1. We have ωi(A
1 + Ar) = 1

for all 1 ≤ i ≤ r. We have Tφ = 2(A2 + · · ·+ Ar−1). If r = 3, then ω1(Tφ) = 1 = ω3(Tφ) and
ω2(Tφ) = 2. If r ≥ 4, then ωi(Tφ) ≡ 0 mod 2.

B.3.2. Orthogonal. Here (the second row of Table A.1) the rank r of gC is given by d+ 4 ∈
{2r, 2r + 1}.

In the case that d ≡ 1 mod 2, we have

ωi(A
2) =

{
1 , i = 1, r ,
2 , 2 ≤ i ≤ r − 1 .

ωi(T2) ≡ 0 mod 2 , i ≤ r − 1 ,

ωr(T2) ≡ 1
2r(r + 1) mod 2 .

In the case that d ≡ 0 mod 2, we have

ωi(A
2) =

{
1 , i = 1, r − 1, r ,
2 , 2 ≤ i ≤ r − 2 .

ωi(T2) ≡ 0 mod 2 , i ≤ r − 2 ,

ωr−1(T2) = ωr(T2) ≡ 1
2r(r + 1) mod 2 .

B.3.3. Symplectic. We have

ωi(A
1) = 1 ,

ωi(T1) ≡ i mod 2 .
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B.3.4. Exceptional, rank 6. We have (gC, E) = (e6, A
2) and

(ω1 + ω6)(A
2) = 2 , (ω1 + ω6)(T2) ≡ 0 mod 2 ,

ω2(A
2) = 2 , ω2(T2) ≡ 0 mod 2 ,

(ω3 + ω5)(A
2) = 4 , (ω3 + ω5)(T2) ≡ 0 mod 2 ,

ω4(A
2) = 3 , ω4(T2) ≡ 0 mod 2 .

B.3.5. Exceptional, rank 7. We have (gC, E) = (e7, A
1), with ω7(A

1) = 1 and ωi(A
1) ≥ 2 for

all 1 ≤ i ≤ 6. Also ω1(T1) ≡ 0 mod 2.

B.3.6. Exceptional, rank 8. For (gC, E) = (e8, A
8) we have ωi(A

8) ≥ 2 for all 1 ≤ i ≤ 8.

B.3.7. Exceptional, rank 4. We have (gC, E) = (f4, A
1) and ωi(A

1) ≥ 2 for all 1 ≤ i ≤ 4.

B.3.8. Exceptional, rank 2. We have (gC, E) = (g2, A
2), ω1(A

2) = 1 and ω2(A
2) = 2, and

ωi(T1) ≡ 0 mod 2 for all 1 ≤ i ≤ 2.
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