
Supplementary Materials

1 Demography of the sample

We included all occupations that involve an important component of innovation
and creativity: writers, philosophers, painters, musicians and sculptors. By
contrast, we excluded rulers, military personnel, lawyers, religious leaders, and
physicians because these occupations arguably do not involve the same level of
creativity. Some extra creative occupations could have been included, but were
excluded due to the small number of individuals in each category: engineers,
geographers, explorers, cartographers, or architects. In total, 22,943 individuals
were included in the dataset (see Table 1).

We included in our sample all modern countries for which there were lists by
nationality in science for the 19th century or before. We created two aggregated
countries (Scandinvia and Iberia) because some environmental variables were
only available at this level (see below, urbanization).

As shown in Figure S1, national productivity differs markedly from per
capita productivity (Figure 1, main manuscript).

Figure 1: Number of individuals per country
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Top 10 individuals

Names Languages Country Birth Death
Isaac Newton 207 United King-

dom
1643 1727

Galileo Galilei 176 Italy 1564 1642
Charles Darwin 175 United King-

dom
1809 1882

Nicolaus Copernicus 150 Germany 1473 1543
Leonhard Euler 142 Germany 1707 1783
Dmitri Mendeleev 135 Russia 1834 1907
Carl Friedrich Gauss 134 Germany 1777 1855
Alfred Nobel 133 Scandinavia 1833 1896
Johannes Kepler 132 Germany 1571 1630
Gottfried Wilhelm
Leibniz

132 Germany 1646 1716

Random sample of individuals with a median score

Names Languages Country Birth Death
Marc-Auguste Pictet 9 Germany 1752 1825
Wilhelm Keferstein 9 Germany 1833 1870
Paolo Frisi 9 Italy 1728 1784
Heinrich Schumacher 9 Germany 1757 1830
Jacques Rohault 9 France 1618 1672
Gabrio Piola 9 Italy 1794 1850
Carl Osten-Sacken 9 Russia 1828 1906
Friedrich Weber 9 Germany 1781 1823
Samuel Klingen-
stierna

9 Scandinavia 1698 1765

Nicolas Charles
Seringe

9 France 1776 1858

Random sample of individuals with a low score

Names Languages Country Birth Death
Richard Pendlebury 1 United King-

dom
1847 1902

Thomas Rudd 1 United King-
dom

1583 1656

Walter Trevelyan 1 United King-
dom

1797 1879

James Douglas Dick-
son

1 United King-
dom

1849 1931

Alexander Yersin 1 Switzerland 1825 1863
Carl Goldschmidt 1 Germany 1807 1851
Antonio Filippo
Ciucci

1 Italy 1650 1710

Adam Anderson 1 United King-
dom

1783 1846

William Campion 1 United King-
dom

1820 1896

Gustav Schwartz 1 Austria 1809 1890

Table 1: Scientists ranked by the importance of their contributions to the ad-
vancement of science
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Discipline Number of pages
scientists 3017
composers 2311
painters 9366
writers 6631

philosophers 441
sculptors 1177

Table 2: Number of individuals per occupation

Figure 2: National scientific production (1500 – 1850)
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2 Per capita estimates

Figure 3: Estimated scientific production per capita per language and per proxy
(1500-1850)
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Figure 4: Estimated scientific Production per capita (top 10%)
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Figure 5: Estimated cientific Production per capita (bottom 90%)

Figure 6: Estimated cientific Production per capita including Northwestern
Europe (i.e., England, Scotland, Wales, Ireland, the Netherlands and Belgium
combined)
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Figure 7: Estimated cientific Production per capita (‘scientist’ first occupation
only)
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Figure 8: Estimated scientific production per capita for Catholic and Protestant
countries

3 Statistical modelling

We chose to model the data by Partially observed Markov process, implemented
by the R package Pomp (1). This framework is simulation-based: to search for
the maximum-likelihood parameters, Pomp only requires to specify a way to
simulate the data (with a given set of parameters), instead of a way to evaluate
the likelihood of these parameters (which is computed by Monte-Carlo methods,
by simulating a lot of trajectories and measuring how it fits with data). This
gives a considerable flexibility, allowing to specify much more explicit models,
though at a large computational cost.

Each model is fitted by iterated filtering. One way to understand the algo-
rithm is draw an analogy with natural selection. Starting by an initial guess
(a vector of parameter values), the algorithm creates a ”population” of param-
eters vectors by perturbating the values, thus creating variation. Each vector
can be thought as a genotype. A particle filter (or sequential Monte-Carlo)
then estimates the likelihood of each parameter vector, a measure of the com-
patibility between the parameters and the data, which gives an analogue of
fitness. Each vector then reproduces in proportion to their likelihood, forming a
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Figure 9: Scientific production per capita estimated without the English
Wikipedia

new population. This process is iterated, the perturbations being progressively
cooled down, as we are interested in a model without artificial perturbations.
Just as natural selection typically brings the genotype around a fitness peak,
the process is predicted to stabilize on (possibly local) maximum likelihood pa-
rameters. To be sure to find the global maximum likelihood parameters, this
process is repeated with different starting points, all across the range of reason-
able guesses. We also chose to log-transform the data, as it provides a more
intelligible analysis (without changing the results qualitatively).

The model with the lowest AIC is the (C) one, which only takes into account
autoregression and the effect of GDP (AIC = 123.2 for (C), AIC > 124.9 for
all other models). Using BIC gives the same result (with (BIC = 142.6 for
(C), BIC > 147 for all other models). The likelihood ratio test allows us to
reject the (B) model for the (A) one (p < 10−6), which confirms that the data
are autocorrelated. The (C) model also explains the data significantly better
than (B) (p = .008), which confirms the role of GDP. Aside, no model without
the impact of GDP is able to reject the (B) model: (D), (F) and (J) are not
significantly better than (B) (p = .504, p = .301 and p = .266, respectively),
which casts doubt on the role of cumulated production, horizontal diffusion and
horizontal cumulated diffusion to account for scientific production. Similarly,
no complexification of the (C) model is able to reject it: neither by adding an
interaction between GDP and cumulated production ((E) vs (C): p = .865), nor
by adding horizontal diffusion ((G) vs (C): p = .91) or an interaction between
GDP and horizontal diffusion ((I) vs (C): p = 634). The most complex model
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Figure 10: Evolution of the share of estimated scientific production per country
and per discipline (1300 - 1850)
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(K) has a higher likelihood than C, which is normal: adding parameters to a
model can only increase the likelihood. Yet, it is also insufficient to reject the
model C (p = .687).

AIC BIC Log-likelihood
A 304.79 321.42 -146.40
B 148.87 168.26 -67.43
C 136.94 159.10 -60.47
D 149.98 172.14 -66.99
E 138.88 163.81 -60.44
F 148.73 170.89 -66.36
G 138.55 163.49 -60.28
H 148.39 170.56 -66.20
I 138.48 163.42 -60.24
J 145.92 165.32 -65.96
K 138.76 172.01 -57.38

Table 3: Scores of the models: Akaike information criterion, Bayesian informa-
tion criterion and log-likelihood

3.1 Likelihood ratio tests

A Pomp model requires two components:

i) The ”state process”, a stochastic relation between scientific production at
time t and t+ 1, allowing to simulate trajectories.

GDP and Nj (the production of other countries) are treated as covari-
ables, time-varying given environment parameters. ε ∼ N (1, σ) produces
a multiplicative noise prone to produce the fat-tailed data we observe.
ε ∼ N (1, σ2) is a classic white noise.

ii) A ”measurement model”: the data (nobs) are assumed to be a stochastic
function of a latent unobserved variable n, which we are interested in. In
our case, we simply assumed that we observe the reality up to a white
noise : nobs ∼ N (n, σobs).

We considered the following models :

A) The null model assumes that scientific production, during a time step t
and for a region i, is independent of past production, of production from
other regions, or of GDP. A region always has a mean production c, with
a variance driven from the random variable ε′ ∼ N (0, σ′) corresponding
to white noise.

nti = c+ ε′
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B) The model with vertical transmission assumes that scientific production,
during a time step t and for a region i, depends on nt−1i , the scientific
production at time t− 1.

nti = c+ z · nt−1i · ε+ ε′

C) The model with GDP assumes that scientific production, during a time
step t and for a region i, depends on GDP t

i the GDP of that region at
time t.

nti = c+ z · nt−1i · ε+ α ·GDP t
i + ε′

D) The model with cumulated vertical transmission assumes that scientific
production, during a time step t and for a region i, depends on the scientific
production of the region at times j < t.

nti = c+ z · nt−1i · ε+
∑
j<t

nji · e+ ε′

E) The model with cumulated vertical transmission tied to GDP assumes that
scientific production, during a time step t and for a region i, depends on
GDP t

i the GDP of that region at time t, and on the interaction between
this GDP and the scientific production of the region at times j < t.

nti = c+ z · nt−1i · ε+ α ·GDP t
i +

∑
j<t

nji · f ·GDP
t
i + ε′

F) The model with horizontal transmission assumes that scientific produc-
tion, during a time step t and for a region i, depends on N t−1

j the scientific
production of other regions j at time t− 1, and Di,j the distance between
regions i and j.

nti = c+ z · nt−1i · ε+
∑
j 6=i

nt−1j

D2
i,j

d+ ε′

G) The same model, assuming that scientific production also depends on
GDP:

nti = c+ z · nt−1i · ε+ α ·GDP t
i +

∑
j 6=i

nt−1j

D2
i,j

d+ ε′

H) The model with horizontal transmission tied to GDP assumes that scien-
tific production, during a time step t and for a region i, depends on GDP t

i

the GDP of that region at time t, N t−1
j the scientific production of other

regions j at time t− 1, and Di,j the distance between regions i and j.

nti = c+ z · nt−1i · ε+
∑
j 6=i

nt−1j

D2
i,j

(b ·GDP t
i ) + ε′
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I) The same model, assuming that scientific production also depends on
GDP:

nti = c+ z · nt−1i · ε+ α ·GDP t
i +

∑
j 6=i

nt−1j

D2
i,j

(b ·GDP t
i ) + ε′

J) The model with cumulated horizontal transmission assumes that scientific
production, during a time step t and for a region i, depends on nkj the
scientific productions of other regions j at time k, and Di,j the distance
between regions i and j.

nti = c+ z · nt−1i · ε+
∑
j 6=i

∑
k<t

nkj
D2

i,j

d+ ε′

K) The most complex model, all other models being included in this one, is
then :

nti = z·nt−1i ·ε+α·GDP t
i +

∑
j 6=i

N t−1
j

D2
i,j

(d+b·GDP t
i )+N t−1

i (e+f ·GDP t
i )+c+ε′

In 3.1, we present the p-values resulting of all possible likelihood ratio tests.
These tests are only doable on nested models, hence a scarce matrix.
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Figure 11: Models of scientific production and diffusion. Each box A to J
represents one of the models proposed to explain scientific production. Each
square represents the scientific production of a region over the course of 50 years.
Only two regions (named region 1 and region 2) are represented here, and only
three time steps (named t, t+1 and t+2) are represented here. The solid arrows
represent the direct influence of either the scientific production of a region on the
scientific production of another region, or the level of economic development of
a region (represented here by the GDP) on its scientific production. The dotted
arrows represent the influence of GDP on the importance of scientific diffusion
between regions (horizontal) or time step (vertical). Model K, which combines
all the hypotheses, is not shown.
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B C D E F G H I J K
A < 10−6 *** < 10−6 *** < 10−6 *** < 10−6 *** < 10−6 *** < 10−6 *** < 10−6 *** < 10−6 *** < 10−6 *** < 10−6 ***
B 0.008 ** 0.504 0.03 * 0.301 0.028 * 0.266 0.027 * 0.225 0.122
C 0.865 0.662 0.634 0.687
D 0.087 .
E 0.548
F 0.014 * 0.11
G 0.575
H 0.015 * 0.117
I 0.582
J 0.127

Table 4: Results of all possible likelihood ratio tests, with null hypothesis in rows and alternative hypothesis in columns
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3.2 Convergence analysis

To verify that the algorithm is indeed reaching a unique maximum likelihood
point, whatever the starting point, we can plot the evolution of each parameter
value through iterations (see Fig. 12). Here, note that the variance parameters
(σ, σ2 and σobs) are squared, hence the symmetry across zero).

However, there is still some variability among estimates. To investigate why,
we can plot pairwise plots of the different estimates (Fig. 13, which give more
insights on the likelihood landscape. Here, we can observe two reasons for this
variability. First, pure noise due to the algorithm, moving the estimate slightly
away from the maximum likelihood, just like in evolutionary biology, mutational
load moves phenotypes slighly away from the optimum. We can indeed see in
the first row of Fig. 13 that log-likelihood plotted against each parameter forms
a bell curve. Second, we can observe for instance that the higher the parameter
a is estimated, the lower z and c are. This indicates ”ridges” in the likelihood
landscape, which are prone to generate variability in estimates.
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Figure 12: Convergence diagnostic for the model C (200 different starting points,
Np = 20000, Nmif = 10000)
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Figure 13: Pairwise estimates of all runs of the (C) model
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