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Supplementary Information 
 

 
 

Figure S1. The normalized probabilities of creating a brand with between one and four components when λ is 0.5, 3, and 
15. Note that the normalization here is only for plotting purposes. 
 

 
 
Figure S2. A map of Kansas split into the four rectangular areas of approximately equal size that was used for the 
structured and mixed datasets: NW in red, SW in blue, NE in purple, SE in green. 
 

 NE NW SE SW 
O-2 3,719 3,255 4,603 5,027 
O-3 979 800 1,429 1,605 
Y-2 9,866 8,765 12,207 11,280 
Y-3 3,565 2,586 4,839 4,132 

 
Table S1. The sample sizes for each of the 16 subsets (e.g. O-NE-2 has 3,719 brands). 
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Figure S3. A comparison of the model used in this study with standard models of anticonformity and conformity in 
cultural transmission, both of which exponentiate the frequency of variants by a parameter (henceforth C for 
comparison). Panel A shows the processes that different values of C correspond to, and panel B shows the effect that 
these values have on the probability of adoption of cultural variants. In panel B, the frequency distribution of the eight 
variants is linear from 8 to 1—F(1) = 8, F(2) = 7, etc. In the standard model, agents are only able to adopt the variants 
of the demonstrators that they interact with. When 0 < C < 1 you get anticonformity: rare variants are more likely to be 
adopted than expected under random/unbiased copying (comparing blue line to dotted black line in panel B). Likewise, 
when C > 1 you get conformity: common variants are more likely to be adopted than expected under random/unbiased 
copying (comparing orange line to dotted black line in panel B). Researchers using these standard models do not explore 
C ≤ 0 (Crema et al., 2014, 2016; Lachlan et al., 2018; Youngblood et al., 2021; Youngblood & Lahti, 2022), because it is 
not usually feasible for the rarest variants to have the highest probability of adoption if the vast majority of agents will 
not encounter them (in fact, they often set a lower bound of 0.5; Crema et al., 2014, 2016). In our model, though, agents 
create brands from a standardized list of components allowed by the state of Kansas, and no new types are innovated 
over the course of the study. This global information makes it possible for the use of components to be decoupled from 
(C = 0) or inversely related to (C < 0) their current frequencies. For the purposes of this study, we consider this 
“pressure for distinctiveness”, where the probability of adoption is negatively related to frequency, to be qualitatively 
different from what is usually referred to as “copying”, where the probability of adoption is positively related to 
frequency. This interpretation may only be relevant to the invention of cultural traits produced from a bounded set of 
constituent parts. For example, in a standard cultural transmission model C < 0 could be interpreted as extreme anti-
conformist copying, but the important point for us is that this extreme bias at the level of components leads to increased 
distinctiveness at the level of brands. 
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Figure S3. The results of 10,000 prior simulations run with (orange) and without (blue) considering angles, alongside the 
observed summary statistics (black). Panel A shows the first two principal components from a PCA, and panel B shows 
the two dimensions from a UMAP run with 15 nearest neighbors and a minimum distance of 0.1. The model with angles 
clearly does not capture the patterns in the observed summary statistics.  
 

 
 
Figure S4. The results of 10,000 prior simulations (orange) and posterior simulations (blue), alongside the observed 
summary statistics (black). Panel A shows the first two principal components from a PCA, and panel B shows the two 
dimensions from a UMAP run with 15 nearest neighbors and a minimum distance of 0.1. The simulations from the 
posterior capture a much smaller portion of the parameter space around the observed data. 
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Figure S5. Robustness check: the posterior distributions for the two parameters of the ABM computed with random 
forest ABC, plotted against the priors (dotted). The ABC was fitted to output of the ABM produced by known 
parameters: λ = 3 and C = -1. 
 

 
 
Figure S6. Robustness check: the posterior distributions for the two parameters of the ABM computed with random 
forest ABC, plotted against the priors (dotted). The ABC was fitted to output of the ABM produced by known 
parameters: λ = 3 and C = 1. 
 

 
 
Figure S7. The posterior distributions for the two parameters of the ABM computed with random forest ABC when the 
data are structured (blue), time-mixed (orange), and space-mixed (green), plotted against the priors (dotted). The 
posterior for both parameters remains roughly the same across the three conditions. 
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 Time-Mixed Space-Mixed 
 Estimate SE 95% CI Estimate SE 95% CI 

α: intercept 0.75 0.017 [0.73, 0.78] 0.73 0.017 [0.68, 0.76] 
βC: complexity -1.28 0.018 [-1.31, -1.25] -1.21 0.017 [-1.24, -1.15] 
βA: actual 0.12 0.004 [0.11, 0.14] 0.15 0.004 [0.14, 0.16] 
βM: mixed -0.005 0.0009 [-0.007, -0.003] -0.02 0.0009 [-0.02 0.02] 
βAM: actual*mixed 0.02 0.004 [0.01, 0.03] 0.05 0.004 [0.04, 0.06] 
σ: std deviation 0.29 NA [0.29, 0.29] 0.29 NA [0.29, 0.29] 

 
Table S2. The estimates, Wald standard errors, and 95% confidence intervals (bootstrapped from 50 simulations) from 
frequentist versions of the best fitting models for the time-mixed (left) and space-mixed (right) datasets. The standard 
error for σ is omitted because Wald standard errors are generally considered to be poor summaries of the uncertainty of 
variance components. 
 
Departures from preregistration 
 

The original version of the agent-based model included a more complex model with separate 
parameters for copying and distinctiveness within defined geographic radii. During peer review, we 
discovered that random forest ABC was unable to recover known parameter values from simulated 
data using this model, so we have made the following simplifications to the generative inference 
portion of the analysis: 

1. The two geographic radii were fixed to the maximum pairwise distance between zip codes 
in Kansas. This means that pressure for copying and distinctiveness are now global—across 
the entire dataset—rather than having a spatial pattern. 

2. The separate parameters C and D were combined into a single parameter C, for which 
positive values produce copying and negative values produce distinctiveness. We 
compressed the two parameters because C and D counteract each other when the 
geographic radii have the same value (e.g. C = 1 and D = -1 in the original model would be 
equivalent to C = 0 in the new model). The prior for C was modified to be symmetrical 
around zero. 

3. We originally hypothesized that there would be pressure for distinctiveness within a smaller 
radius, and some level of copying within a larger radius. This prediction was logically 
consistent with the shuffling model, which assumes copying across the entire state, because 
the pressure for distinctiveness would be geographically bounded. In the new global model, 
where the spatial pattern has been removed, a prediction of distinctiveness is no longer 
logically consistent with the shuffling model. As such, we have opted to remove our original 
hypotheses from the new version of the manuscript. 


