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Food sharing model

Dynamics predicted by equations (1-2) of the main text. Using equation (1) with π = −cx
and V = vyx, we can find the corresponding utilities of two actions, u(1) and u(0). With GF = 1,
their difference ∆u = u(1)− u(0) for a focal individual can be written as

∆u = −c+ vy + k1(2y − 1) + k2(2p− 1) + k3. (S1)

Individuals for whom ∆u > 0 will share food (i.e., choose x = 1) while those for whom ∆ < 0 will
not.

Let there be an equilibrium with a frequency p of food-sharers. Consider equation (2). We will
abuse notation by assuming that the values of α, β and γ are normalized so that their sum is one
for each individual. Then the attitudes of individuals with x = 0 and x = 1 are

y0 = βp+ γ, y1 = βp+ γ + α.

Taking the average of y in these two subgroups of individuals, we see that

ȳ1 − ȳ0 = ᾱ.

That is, the average difference in attitudes between individuals who share and those who do not is
equal to the average relative importance α of the cognitive dissonance.

The state of universal sharing (i.e., p = 1 and y = 1) is stable if at this state ∆u > 0 for all
individuals. From equation (S1), this is equivalent to condition

v + k1 + k2 + k3 > c,

for all individuals. That is, the joint effect of normative value, cognitive dissonance, conformity
with peers and conformity with authority on decision-making is larger than the benefit lost.

The state of no sharing (i.e., p = 0 and y = γ) is stable if ∆u < 0 for all individuals. From
equation (S1), this is equivalent to condition

c+ k1 + k2 > γ(v + 2k1) + k3,

for all individuals. That is, the joint effect of conformity with authority on decision-making and
beliefs is smaller than the benefit lost plus the effects of conformity with peers and cognitive
dissonance.

From equation (S1), the equilibrium with an intermediate value of p is stable with respect to
decision-making if for all individuals with x = 0, ∆u < 0, while for all individuals with x = 1,
∆u > 0. Solving for p, we find that stability requires that

c+ k1(1− 2γ − 2α) + k2 − k3 − v(α+ γ)

β + 2k1β + 2k2
≡ pmin < p < pmax ≡ pmin +

α

β + 2k2
2k1+v
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for each individual. This condition can be written as

max (pmin) < p < min (pmax) ,

where maximum and minimum are computed over the whole population. If the above condition
if satisfied, it defines a line segment each point p of which is an equilibrium. Each equilibrium is
characterized by variation in individual attitudes y.

Agent-based simulations. As mentioned in the main text, to study this model numerically
we introduce some additional features in an attempt to make it more realistic. First, we assume
that there is not one but a large number of relatively small groups of size n between each individuals
randomly move at rate m (using the classical island model, Wright (1931)).

Second, we allow for stochasticity in decision making and in the process of updating the at-
titudes. In making decisions, individuals aims to maximize the utility. To capture the errors in
utility evaluation, we assume that individuals choose x = 1 or x = 0 with probabilities S and
1 − S, respectively, where S is increasing with ∆u. Specifically, following the Quantal Response
Equilibrium (QRE) approach (Goeree et al. 2016), we set

S = 1/(1 + exp(−λ∆u)), (S2)

where λ is a non-negative precision parameter. For example, if λ = 0 (zero precision), then S = 0.5
and individual make random decisions; if λ = ∞ (infinite precision), individuals always chooses
the action maximizing utility (x = 1 if ∆u > 0 and x = 0 if ∆u < 0). The advantage of the
QRE approach over alternatives (e.g., Young 1998) is that the magnitude of errors decreases as ∆u
becomes larger.

We introduce stochasticity in the attitude updating by adding a random perturbation (with
zero mean and a small standard deviation ε) to the right hand side of equation (2).

Third, we assume that a random proportion s of individuals are successful hunters. Their
attitudes are updated according to equation (2) of the main text. For remaining individuals, the
changes in attitudes y are described by the same equation (2) except that the cognitive dissonance
term is removed (because for these individuals there is no action taken).

The order of events in numerical simulations is 1) decision making, 2) attitudes updating, 3)
random dispersal of a proportion m of individuals.

Political protests model

Mathematically, this model is similar to that of food sharing except that, following Kuran (1989)
we ignore material payoffs (i.e. set c = 0) and normative value (i.e. set V = 0). In particular, the
deterministic version of the model can have a line of equilibrium with different values of p. At each
equilibrium, there will be some distribution of attitudes in the population.

The order of events in numerical simulations is 1) decision making and 2) attitudes updating.

Social identity model

Because in this model individual action x is a continuous variable, finding the best response requires
a different procedure. Specifically, differentiating utility function (1) with respect to x we find that
given y, the value of x maximizing u is

x =
k1y + k3FG− c

k1 + k3F
= εxy + (1− εx)G− c̃,
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Figure S1: Effects of initial distribution of y in the political protests model for different intensities F of an authority
message promoting protests (G = 1). The initial (white bars) and final (blue bars) distributions of attitudes for
one run. The blue and red vertical lines mark the mean attitude ȳ and the frequency p of protests, respectively.
Parameters: kp,max = kg,max = 0.75, V = 0.1. Lognormal distribution of initial values of y with mean 0.2 and standard
deviation 0.1. A population of size n = 1000. Deterministic updating with no stochasticity (λ = ∞, σ = 0.0, uy = 1).

where εx = k1/(k1 + k3F ) and c̃ = c/(k1 + k3F ). From equation (3), we find that at equilibrium,

y =
αx+ γFG

α+ γF
= εyx+ (1− εy)G,

where εy = α/(α + γF ). Solving the two above equations, we find the expressions (4) for the
equilibrium values of x and y.

The order of events in numerical simulations is 1) decision making and 2) attitudes updating.
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Figure S2: Predictions of the political protests model for different equal intensities F of the government and
opposition messaging (so that G = 0.5) Left: The dynamics of the average attitude y (green curves) and the
frequency of protesters p (red curves) for 10 different independent runs for each value of F . Right: the initial (white
bars) and final (blue bars) distributions of attitudes for one run. The blue and red vertical lines mark the mean
attitude ȳ and the frequency p of protests respectively. Parameters: kp,max = kg,max = 0.75, V = 0.1. Lognormal
distribution of initial values of y with mean 0.2 and standard deviation 0.1. A population of size n = 1000, precision
λ = 100, error σ = 0.05, probability of attitude updating uy = 0.5.
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