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Best response action

The action x maximizing the utility function u can be found by computing the derivative of
the utility function (1):

∂u

∂x
=D0 −D1x̃−D2x− A1(x− y)− A2(x− ỹ)− A3(x− x̃)− A4(x−G),

=(D0 −D1x̃+ A1y + A2ỹ + A3x̃+ A4G)− (D2 + A1 + A2 + A3 + A4)x.

Solving the above equation for x gives us the best response action given a certain attitude y
and beliefs x̃ and ỹ. I will write it as

xbr = max(0, B0 +B1y +B2ỹ +B3x̃+B4G), (S1a)

S1



where

B0 =
D0

S
,B1 =

A1

S
,B2 =

A2

S
,B3 =

A3 −D1

S
,B4 =

A4

S
(S1b)

are re-scaled individual-specific parameters measuring the effects of material and nonmaterial
forces on individual actions (i = 0, 1, 2 and 3), and

S = D2 +
4∑
i=1

Ai (S1c)

The above equation for xbr naturally assumes that S 6= 0. In analogous evolutionary game
theory models (in which all coefficients Ai are zero), S will be zero if D2 = 0. In this case,
the best response xbr will be equal to a maximum (if D0 −D1x̃ > 0) or 0 (if D0 −D1x̃ < 0)
possible value of x.

As an example, if one disregards all other forces involved in decision-making and focus
only on material cost-benefit considerations (i.e. if all Ai = 0), the best response action will
be

xbr =
D0 −D1x̃

D2

. (S2a)

If the individual believes that the average action of their social partners will always match
their own action (i.e., x̃ = x),

xbr =
D0

D1 +D2

. (S2b)

which is the definition of parameter θ (equation 3 of the main text).
Note that in standard evolutionary game theory (EGT) models using myopic best re-

sponse, variable x̃ is replaced by the average action
∑

j 6=i xj,prev/(n−1) of their social partners
which individuals know exactly.

A single individual joining a large and stable social system

Assume that an individual joins a society where the actions, attitudes and beliefs have
already evolved to a certain stable distribution. Let the society be large enough so that
the impact of a single additional individual on it is negligible. This will allow us to treat
the average action of social partners X as constant. I am interested in how the individual’s
characteristics will change after joining the society. [Note that this model can be used for
describing the subject’s behavior when embedded in a group with bots acting according to
a certain pre-programmed pattern.]

The attitude and beliefs of the focal individual will change according to recurrence equa-
tions (S3). Assume that they converge to an equilibrium (x∗, y∗, ỹ∗, x̃∗) at which x∗ > 0.
From equations (5) and using the fact that βi = 1− αi − γi for all i, at this equilibrium:

y∗ =X + α1(x∗ −X) + γ1(G−X) (S3a)

ỹ∗ =X + α2(y∗ −X) + γ2(G−X) = X + α1α2(x∗ −X) + (α2γ1 + γ2)(G−X), (S3b)

x̃∗ =X + α3(ỹ∗ −X) + γ3(G−X) = X + α1α2α3(x∗ −X) + (α3(α2γ1 + γ2) + γ3)(G−X),
(S3c)
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Substituting these into the best response equation (S1a) and solving for x,

x =
B0 +B4G+ (B1 +B2 +B3 −B1α1 −B2α1α2 −B3α1α2α3)X . . .

1− (B1α1 +B2α1α2 +B3α1α2α3)

· · ·+ (G−X) [B1γ1 +B2(γ1α2 + γ2) +B3(γ1α2α3 + γ2α3 + γ3)]

. . .

=
B0 +B4G

1− (B1α1 +B2α1α2 +B3α1α2α3)

+

(
B1 +B2 +B3 − 1

1− (B1α1 +B2α1α2 +B3α1α2α3)
+ 1

)
X . . .

+
B1γ1 +B2(γ1α2 + γ2) +B3(γ1α2α3 + γ2α3 + γ3)

1− (B1α1 +B2α1α2 +B3α1α2α3)
(G−X).

Therefore the equilibrium value of x can be written as

x∗ = δ + (1− η)X + ξ(G−X), (S4a)

where

δ =
B0 +B4G

1− (B1α1 +B2α1α2 +B3α1α2α3)
, (S4b)

η =
1−B1 −B2 −B3

1− (B1α1 +B2α1α2 +B3α1α2α3)
, (S4c)

ξ =
B1γ1 +B2(γ1α2 + γ2) +B3(γ1α2α3 + γ2α3 + γ3)

1− (B1α1 +B2α1α2 +B3α1α2α3)
(S4d)

Note that ξ = 0, if propaganda by the external authority does not affect individual attitude
and beliefs (i.e. all γi = 0). Correspondingly, the deviation of x∗ for a focal individual from
X can be written as

x∗ −X = δ − ηX + ξ(G−X). (S5)

From here it is straightforward to find equilibrium values of y, ỹ and x̃ using equations (S3).
Note that only non-negative values of x∗, y∗, x̃∗, ỹ∗ and X make sense within my framework.

Equilibrium in a general case

In the general case, all n individuals will be updating their attitudes and beliefs and the
average efforts of peers X will be changing in time. However one still can use equation (S4a)
to approximate the equilibrium. Specifically, summing up across all individuals and equating
the average values of x and X, one finds that at equilibrium

X∗ =
δ +Gξ

η̄ + ξ
, (S6a)

where the bar means the average over the group.
In some of the models I consider in the main text, only a subset of individuals, typically

with the largest benefit-to-cost ratios and/or most affected by external influences, make
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contribution at equilibrium, while others free-ride. In such situations, to predict the average
group effort one needs to sum up equations (S4a) only over a subset L of individuals making
positive efforts. Equation (S6a) then takes a form

X∗ =

∑
L δ +G

∑
L ξ

n− l +
∑

L η +
∑

L ξ
, (S6b)

where l is the number of contributing individuals. In principle, one can find the individuals
who make positive contributions at equilibrium using an iterative procedure similar to that
in ref.Gavrilets and Fortunato (2014). I leave this for future work.

Knowing X∗ allows us to find the equilibrium values of x, y, ỹ, x̃ for each individual. Next
I consider some special cases.

Quadratic payoff function with no external influence

Assume that external influence is absent so that B4 = γ1 = γ2 = γ3 = 0. Then ξ = 0. Note
that in this case, the numerator in the equation for δ is D0/S while that in the equation for
η is 1− (B1 + B2 + B3) = (D1 + D2)/S. Both equations have the same denominator. This
implies that δ(D1 +D2) = ηD0.

No variation in material costs and benefits

Assume that there is no variation in coefficients D0, D1 and D2 between individuals. Then
I find that

X∗ =
δ

η̄
=

D0

D1 +D2

= θ. (S7)

That is, the average action is the action predicted if nonmaterial forces are neglected (see
equation S2a). Therefore, δ−ηX∗ = 0, so that x∗ = X∗. From equations (S3), one concludes
that y∗ = ỹ = x̃ = θ for all individuals, which is equation (6) of the main text. That is, with
no variation in material costs and benefits, the group will converge to a state with identical
actions, attitudes, and beliefs.

Variation in material costs and benefits parameters

Allowing for variation in D0, D1 and D2 and approximating the ratio of expectations δ
η̄

by

the expectation of ratio β/η I find that

X∗ =
δ

η̄
≈ δ/η =

D0

D1 +D2

= θ, (S8a)

which is equation (8a) of the main text. That is, the average action is approximately the
average of actions predicted if nonmaterial forces are neglected (see equation S2a).
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Using equations (S5) and (S3), I find that at equilibrium for each individual

x∗ ≈ X∗ + η (θ − θ), (S8b)

y∗ ≈ X∗ + α1η (θ − θ), (S8c)

ỹ∗ ≈ X∗ + α1α2η (θ − θ), (S8d)

x̃∗ ≈ X∗ + α1α2α3η (θ − θ). (S8e)

which are equations (8b,c,d,e) of the main text. With no cognitive dissonance (i.e. if α1 = 0),
y∗ = ỹ∗ = x̃∗ = X∗. Without the “theory of mind” (i.e. if α2 = 0), ỹ∗ = x̃∗ = X∗. Without
beliefs dissonance (i.e. if α3 = 0), x̃∗ = X∗. Note that mean values of x∗, y∗, ỹ∗ and x̃∗ are
all approximately equal to X∗ if the correlation between θ, η and the strength of cognitive
factors α1, α2, α3 is low. Assuming independence of θ and η, the corresponding variances are
approximately

var(x) = var(θ) η2, (S9a)

var(y) = var(θ) (α1η)2, (S9b)

var(ỹ) = var(θ) (α1α2η)2, (S9c)

var(x̃) = var(θ) (α1α2α3η)2, (S9d)

where var(θ) is the variance of θ’s in the group. Because α1, α2, α3 < 1, all this implies that

var(x) > var(y) > var(ỹ) > var(x̃), (S10)

which is inequality (9) of the main text. That is, my model predicts that the variation
in actions (and deviation from the mean) will be the largest, followed by the variation in
personal norms, followed by the variation in beliefs about norms of others, followed by
the variation in beliefs about the action of others. Similarly, the correlation with material
benefits (characterized by parameter θ) will be the highest for personal beliefs y, followed
by normative expectations ỹ, and empirical expectations x̃. These are testable predictions.

External influence only

If there are no material payoffs in the utility function, i.e. if D0 = D1 = D2 = 0, straightfor-
ward calculation shows that

∑
Bi = 1 and that η− δ/G = 0 for each individual. Therefore,

using equations (S3)-(S4a) for each individual,

x∗ = y∗ = ỹ = x̃ = G, (S11)

which is equation (7) of the main text. That is, the population’s actions, attitudes, and
beliefs at long-term equilibrium are completely determined by the the external influence.
There will be no variation between individuals.

Linear payoff function with an exogenous influence

Here I assume that D1 = D2 = 0 for all individuals while there is variation between in-
dividuals in D0. The corresponding game-theoretic models neglecting nonmaterial factors
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predict a simple behavior: individuals will make the maximum possible effort (if D0 > 0) or
no effort (if D0 < 0). I will assume that D0 < 0 which is the case in several games I consider
below. With nonmaterial factors added but still with no external influence (i.e. A4 = 0),
individuals’ actions, attitudes and beliefs will converge to 0.

Assume there is an external authority promotes a positive effort G. In this case, using
equations (S1a) and (S1c) I find that S =

∑4
i=1Ai,

∑4
i=1Bi = 1, and that δ = (κ + G)η,

where
κ = D0/A4 (S12)

is a measure of the strength of material forces relative to that of external influence. Then
the average effort at equilibrium can be approximated as

X = G− κη

η̄ + ξ
. (S13)

where κ = |D0|/A4 is a measure of the strength of material forces relative to that of external
influences and the composite parameters ξ (defined in the SI) is non-negative. If the effect
A4 of an external authority is large enough, κ is small and the average group effort will be
close to G.

One can now find the equilibrium values of y, x̃ and ỹ from equations (S3).

Games

Numerical procedure

In numerical simulations used to illustrate my results, I used the following procedure for
generating parameter values. I start by assigning parameters D0, D1, D2 by drawing numbers
randomly and independently from certain distributions (specified below). Then I assign
parameters A1, . . . , A4 of the utility function (1) using a two-step procedure. At the first
step, I choose them randomly and independently from a “broken stick distribution” on a
unit interval (MacArthur, 1957). Then I multiply these numbers by a parameter ε which
will vary from 0 to 1. With ε = 0, any normative effect in the utility function will be absent
and individuals will behave according to standard evolutionary game theory assumptions. In
contrast with ε = 1, the expected values of each of parameters Ai will be the same as that of
D2 (in models with D2 6= 0) or D0 (in models with D2 = 0). That is, with ε = 1, the expected
weight of each term in the utility function (1) will be the same. Finally I draw parameters
Cij randomly and independently from a broken stick distribution on interval [0, 0.1]]. Initial
values of x, y, ỹ and x̃ are drawn randomly and independently form a uniform distribution
on [0, 0.1]. At each round, each individual revises its effort with probability 0.5. [In some
simulations, after each update I have perturbed the dynamic variables by small random
errors drawn from a uniform distribution on [−σ, σ]. The effects of such random noise are
intuitive. Therefore for clarity, I removed it from the simulations illustrated in all figures.]

The graphs in the main text and below show the average values of x, y, ỹ, x̃ observed in
numerical simulations. The thin black lines show the theoretical predictions for x computed
using approximation (S6a). However in two games - the Public Goods Game with quadratic
personal costs and the Tragedy of the Commons Game with quadratic costs - if ε = 0 (i.e.,
only material payoffs present), the theoretical prediction is given by max(θi) (see below).
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Table S1: Production function P (or pi) and expected payoffs π(xi, x̃i) in different games. Games with quadratic
payoff functions: Coordination, Public Goods Game (PGG) with quadratic costs, PGG with diminishing return,
Common Pool Resource (CPR), Tragedy of the Commons (TC) with quadratic costs, and TC with diminishing return.
Games with linear payoff functions: Dictator, Give-or-Take, Rule Following, and Linear PGG. Game with quasi-linear
payoff function: continuous Prisoner’s Dilemma. Nonlinear game: “us vs. nature” game. In all collective action
games, the expected group effort is Z = x+ (n− 1)x̃i. An empty entry in the table means that in the corresponding
game the corresponding function or parameter is not defined. Parameters with subscript i (e.g., bi, ci, di, ri, vi) are
specific for individuals. Parameters without subscripts (e.g.., b, d, R) are the same for all individuals. R and ri are
the endowments. Note that variable P in collective action games is the production function while in the Prisoner’s
Dilemma game, Pi is the punishment payoff.

Game Production P/pi Expected payoff πi

Coordination bi − 0.5ci(xi − θi)2 − 0.5di(xi − x̃i)2

PGG w/ quadratic costs P = bZ viP − 0.5cix
2
i

PGG w/ diminishing return P = bZ − 0.5dZ2 viP − cixi
CPR P = bZ − 0.5dZ2 xi

Z P − cixi
TC w/ quadratic costs pi = bixi pi − 0.5ciZ

2

TC w/ diminishing return pi = bixi − 0.5dix
2
i pi − ciZ

Public vs. private production P = bZ − 0.5dZ2

pi = bizi − 0.5diz
2
i viP + pi, where zi + xi = ri

Dictator R− xi
Give-or-Take R− xi
Rule Following R− xi
Linear PGG P = bZ viP − cixi
Continuous PD xix̃iRi + xi(1− x̃i)Si . . .

+(1− xi)x̃iTi + (1− xi)(1− x̃i)Pi
“Us vs. nature” P = b Z

Z+Z0
viP − cixi

Table S1 summarizes the games I will consider. For each game, I will: a) define the payoff
function π(x, x̃) and identify the corresponding θ value, b) identify the Nash equilibrium in
the corresponding evolutionary game theory (EGT) model, and c) show results of agent-
based simulations illustrating individual and group characteristics and compare them with
my approximations and EGT predictions. In the EGT versions of these games, individuals
will use best response to maximize their payoff. The corresponding payoff functions will be
the same as specified in Table 1 except that the term x̃i (empirical expectation of peers’
action) will be replaced by the average action xi,prev of groupmates at the previous time step
as is usually done in best-response modeling.

Coordination Game

I assume that individuals interact randomly in groups. Each individual has a preferred
action but each player also pays a cost if his action deviates from the average action of the
group (Kuran and Sandholm, 2008, Andreoni et al., 2021). The corresponding (subjective)
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expected payoff function can be written as

π(xi, x̃i) = bi − 0.5ci(xi − θi)2 − 0.5di(xi − x̃i)2, (S14)

where θi ≥ 0 is the preferred action of individual i, x̃i is the expected average action, bi is
the maximum benefit, and ci and di are parameters measuring the costs of deviation from
the personally preferred action and from the mismatch with the partners’ actions. For this
game, dπ/dxi = −ci(xi − θi) − di(xi − x̃i). Therefore D0 = ciθi, D1 = −di, D2 = ci + di.
Parameter θi defined in equation (3) is exactly θi of the payoff function π.

EGT analysis. In the EGT version of this game, individuals will aim to maximizes the
payoff function (S14) in which the term x̃i is substituted by the average action xi,prev of
groupmates at the previous time step. I will simplify my analysis by assuming that the
groups size is large enough so that the effect of any single individual on the average is
negligible. In this case, all xi,prev values will approximately be the same, so that I can drop
the subscript i.

Computing the derivative ∂π/∂xi, I find that the best response action for individual i is

xi,br = (1− ri)θi + rixprev, (S15a)

where

ri =
di

ci + di

is the relative strength of conformity pressure.

(a) (b)

Figure S1: Examples of coevolutionary dynamics in the Coordination Game corresponding to Figure 3 of the main
text. (a) Five runs with no external influence. (b) Five runs with external influence with G = 2. Different colors
show different individuals. The thick black lines show the group averages. Group size n = 100, ε = 1. The numbers
on top show the number of contributing individuals at the last time step. Other parameters: individual values of
θi, ci, di are drawn randomly and independently from lognormal distributions with mean 1 and standard deviation
0.1. Initial values of y, ỹ and x̃ were chosen randomly and independently from a uniform distribution on [0, 0.1].

Assume that parameters θi and ri are distributed in the group independently. Then the
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average individual effort at (Nash) equilibrium is

x∗ = θ, (S15b)

while the equilibrium effort for individual i can be written as

x∗i = θi + ri(θ − θi). (S15c)

Here and below bars mean the average over the group.
General analysis. Figure 3 in the main text summarizes my results for this model. Fig-

ure S1 shows sample trajectories corresponding to ε = 1 (i.e. when all components of the
utility function (1) are of similar order).

Public Goods Game with quadratic personal costs

In this game, individuals make costly contributions xi to a common group effort Z the value
of which is then multiplied by a constant factor b. The resulting amount P = bZ is then
distributed back to the group members with ith individual getting value viP . Following
Esteban and Ray (2001), McGinty and Milam (2013), Gavrilets (2015), Calabuig et al.
(2018), assume that the cost to an individual is quadratic in their effort. Then the expected
material payoff of individual i making effort xi given the expectation that the groupmates
will make an average effort x̃i is

π(x, x̃) = vibZ − 0.5cix
2
i , (S16)

where ci is the individual cost coefficient and the expected total group effort Z = xi+(n−1)x̃.
One finds that dπi/dxi = bvi − cixi so that D0,i = bvi, D1,i = 0, D2,i = ci, and

θi =
bvi
ci
. (S17)

is just the benefit to cost ratio.
EGT analysis. In the EGT version of this model, the term (n − 1)x̃ in the expression

for Z will be substituted by the sum of efforts of groupmates at the previous time step,
Z−i,prev =

∑
j 6=i xj,prev. Then, the best response and the Nash equilibrium for individual effort

is
xi,br = xi,ne = θi.

If all individuals have identical coefficients vi = 1/n and ci = c, then the Nash equilibrium is

xne =
b

nc

while the effort maximizing the total group payoff is

xopt =
b

c
,

that is, n times bigger.
General analysis. Figure 4 in the main text illustrates the general patters in this model.
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(a) (b)

Figure S2: Examples of coevolutionary dynamics in the Public Goods Game with quadratic costs. (a) Five runs
with no external influence. (b) Five runs with external influence with G = 10. Different colors show different
individuals. The thick black lines show the group averages. Group size n = 20, ε = 1. The numbers on top show
the number of contributing individuals at the last time step. Other parameters: b = n, individual values of ci are
drawn randomly and independently from lognormal distributions with mean 1 and standard deviation 0.1, values of
vi are drawn from a broken stick distribution on interval [0, 1]. Initial values of y, ỹ and x̃ were chosen randomly and
independently from a uniform distribution on [0, 0.1].

Figure S2 shows sample trajectories of the general model corresponding to Figure 4 with
ε = 1.

Public Goods Game with diminishing returns

In this game (Anderson et al., 1998, Apesteguia and Maier-Rigaud, 2006), the production
function shows a diminishing return in the group effort X:

P = bZ − 0.5dZ2. (S18a)

and the individual payoff is
πi = viP − cixi. (S18b)

Here, dπi/dxi = vi(b−d(xi+(n−1)x̃)−ci. Therefore D0,i = vib−ci, D1 = vid(n−1), D2 = vid,
and

θi =
b− ci/vi
dn

. (S18c)

EGT analysis. In the EGT version of this game, the term (n− 1)x̃ in the expression for
dπi/dxi will be substituted by the previous total effort Z−prev,i of ith individual’s peers. The
best response effort is

xbr,i = max
(
0, nθi − Z−prev.i

)
.

In the symmetric version of this game when all coefficients are the same (i.e. ci = c and
vi = 1/n so that all θi are the same), the Nash equilibrium for the total group effort is

Zne,sym = nθ =
b− cn
d

.

S10



(a) (b)

Figure S3: Examples of best response dynamics in the Public Goods Game with diminishing returns and group
size n = 20 and ε = 0. (a) Five run in the symmetric model with vi = 1/n. (b) Five runs in the asymmetric model
with vi chosen randomly from a broken stick distribution. The numbers on top show the number of contributing
individuals at the last time step. The appearance of nonlinear dynamics in a linear system may appear strange.
However because of the truncation used to avoid negative values, the system effectively becomes nonlinear.

In contrast, the total group effort maximizing the total group payoff is

Zopt =
b− c
d

.

Individual contributions can take any values as long as they sum up to Zne,sym. Numerical
agent-based simulations using myopic best response show that the system converges to this
equilibrium, sometimes in a non-monotonic way; at this equilibrium the effort Zne,sym is
supplied by one or few individuals (see Figure S3a).

In the asymmetric case, when values of vi and ci differ between individuals, the system
evolves to an equilibrium at which only a single individual with the smallest value of ci/vi
will make an effort (see Figure S3b). This effort, which is also the total group effort, is

Zne,asym = max(θi).

General analysis. Figure S4 summarizes the properties of this model. The dynamics
observed in agent-based simulations are often non-equilibrium (see Fig. S5). What happens
is that a small number of individuals with sufficiently large values of θi are making large
efforts while the rest of the population free-ride. For some individuals, contributions change
in a cyclical or chaotic manner. The appearance of nonlinear dynamics in a linear system
may appear strange. However because of the truncation used to avoid negative values of my
variables, the system effectively becomes nonlinear.
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Figure S4: Properties of equilibria in the Public Goods game with diminishing return. (a) No external influence.
(b) With external influence with G = 3. From top to bottom: equilibrium means, standard deviations, half-time of
convergence to an equilibrium τ , and Kendall correlation with θ for x, y, ỹ and x̃, respectively. Bars with no color
mean the corresponding correlations are statistically insignificant (at 0.05). The thin black horizontal lines show
the theoretical predictions for x. Parameter ε measures the importance of each of the normative factors relative to
material payoffs. Group size n = 20. Other parameters bi = 2n, ci = di = 1 for all i while parameters vi are drawn
from a broken stick distribution. Initial values of y, ỹ and x̃ were chosen randomly and independently from a uniform
distribution on [0, 0.1]. The stars on top of the bars for ε = 0 mean that the actual values of standard deviations are
5 times larger than shown. Statistics are calculated over 100 last time steps over 40 independent runs each of length
1,000 time steps.

(a) (b)

Figure S5: Examples of coevolutionary dynamics in the Public Goods Game with diminishing returns corresponding
to Figure S4. (a) Five runs with no external influence. (b) Five runs with external influence with G = 3. Group
size n = 20, ε = 1. Different colors show different individuals. The thick black lines show the group averages. The
numbers on top show the number of contributing individuals at the last time step. The appearance of nonlinear
dynamics in a linear system may appear strange. However because of the truncation used to avoid negative values of
dynamic variables, the system effectively becomes nonlinear.
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Common Pool Resources Game

In this game (Walker et al., 1990, Apesteguia and Maier-Rigaud, 2006), the production
function shows a diminishing return in the group effort Z = xi + (n− 1)x̃i:

P = bZ − 0.5dZ2. (S19a)

the individual cost is linear in effort xi, and the individual payoff is

πi = viP − cixi (S19b)

as in the Public Goods Game with diminishing returns considered above. However here
valuation vi is not a constant but rather depends on the individual’s effort:

vi =
xi
Z

(S19c)

as in the Tullock contest (Tullock, 1980, Konrad, 2009).
One finds that dπi/dxi = b − 0.5d[(n − 1)x̃ + 2x] − ci. Therefore D0,i = b − ci, D1 =

(n− 1)d/2, D2 = d, and

θi =
2(b− ci)
d(n+ 1)

.

EGT analysis. Replacing, as before, the term (n− 1)x̃ in the payoff function by X−i,prev,
I find that the best response action and the corresponding Nash equilibria are

xi,br = max

(
0,
n+ 1

2
θi − 0.5X−i,prev

)
, (S20a)

Zne = n θ, (S20b)

x∗i = θi + n(θi − θ). (S20c)

Note that for x∗i to be non-negative, it is required that the minimum min(θi) >
n
n+1

θ, i.e.
variation in θi should quickly decrease with n. Once negative values of x∗i appear, the best
response dynamics can become non-equilibrium.

If all individuals have identical coefficients ci = c, then the Nash equilibrium for the total
group effort is

Xne = max (0, nθ) ,

while the group effort Xopt maximizing the total group payoff is

Xopt = max

(
0,
b− c
d

)
,

that is, 2n/(n+ 1) times smaller.
General analysis. Figure 5 of the main text summarizes the properties of this model.

Figure S6 gives examples of the coevolutionary dynamics.
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(a) (b)

Figure S6: Examples of coevolutionary dynamics in the Common Pool Resource game corresponding to Figure 5.
(a) Five runs with no external influence. (b) Five runs with external influence with G = 0.5. Group size n = 20,
ε = 1. Different colors show different individuals. The thick black lines show the group averages. The numbers on
top show the number of contributing individuals at the last time step.
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Tragedy of the Commons Game with quadratic costs

In the Tragedy of the Commons games, individuals exploit a resource getting a benefit which
increases with individual effort xi but sharing a cost of its exploitation which increases with
the total group effort X (Hardin, 1968).

Assume that individual benefit is linear in individual effort xi but the cost is quadratic
in group effort X:

π = bixi − 0.5ciZ
2.

In this model, dπ/dxi = bi − ci[(n− 1)x̃+ xi] so that D0 = bi, D1 = ci(n− 1), D2 = ci and

θi = bi/(cin).

EGT analysis. Here the best response action is xbr,i = max(0, nθi − Z−i,prev). In the
symmetric version of this model when all θi values are the same, the Nash equilibrium for
the total group effort is

Zne = nθ = b/c.

The total group effort maximizing the total group payoff is

Zopt = b/(cn),

that is, n times smaller. Individual contributions can take any values as long as they sum
up to Zne,sym.

In the asymmetric case, when benefit-to-cost ratios bi/ci are different, only an individual
with the largest value of θi will make an effort θi so that the group effort is

Z∗ = max(θi).

General analysis. Figure S7 summarizes the properties of this model.
Figure S8 show sample trajectories corresponding to Figure S7 with ε = 1.
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Figure S7: Properties of equilibria in the Tragedy of the Commons game with quadratic costs. (a) No external
influence. (b) With external influence promoting decreased effort (G = 1/n). From top to bottom: equilibrium
means, standard deviations, half-time of convergence to an equilibrium τ , and Kendall correlation with θ for x, y, ỹ
and x̃, respectively. Parameter ε measures the importance of each of the normative factors relative to material payoffs.
Parameters: n = 20, bi are drawn from a lognormal distribution with mean 1 and variance 0.1, ci = 1/n. The stars on
top of the bars for ε = 0 mean that the actual values of standard deviations are 5 times larger than shown. Statistics
are calculated over 40 independent runs. Note the difference in convergence time-scales between a and b.

(a) (b)

Figure S8: Examples of coevolutionary dynamics in the Tragedy of the Commons game with quadratic costs
corresponding to Figure S7. (a) Five runs with no external influence. (b) Five runs with external influence promoting
decreased effort at G = 1/n. Group size n = 20, ε = 1. Different colors show different individuals. The thick black
lines show the group averages. The numbers on top show the number of contributing individuals at the last time
step.

S16



Tragedy of the Commons game with diminishing returns

Alternatively assume that individual benefit shows a diminishing return while the cost term
is linear in group effort Z. Then the payoff function is

π = (bixi − 0.5dix
2
i )− ciZ,

where bi, di and ci are individual benefit and cost parameters.
In this game, dπ/dxi = bi − ci − dixi. Therefore D0 = bi − ci, D1 = 0, D2 = di and

θi =
bi − ci
di

.

EGT analysis. Here the best response action is

xbr,i = max(0, θi),

which is also the Nash equilibrium.
In the symmetric version of this game when all coefficients are the same (i.e. ci = c, bi =

b, di = d, the Nash equilibrium for the individuals effort is

xne,sym =
b− c
d

.

The individual effort maximizing the total group payoff is

xopt =
b− cn
d

.

General analysis. Figure S9 summarizes the behavior of this model. With no external
authority, parameter ε has not effect on average behavior. In contrast to the previous case,
individuals respond to the authority and decrease their efforts. The larger ε, the bigger
the response. Figure S10 show sample trajectories of the general model corresponding to
Figure S9 with ε = 1.
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Figure S9: Properties of equilibria in the Tragedy of the Commons game with diminishing returns. (a) No external
influence. (b) With external influence promoting decreased effort at G = 1/n. From top to bottom: equilibrium
means, standard deviations, half-time of convergence to an equilibrium τ , and Kendall correlation with θ for x, y, ỹ
and x̃, respectively. The thin black horizontal lines show the theoretical predictions for x. Parameter ε measures the
importance of each of the normative factors relative to material payoffs. Parameters: group size n = 20, parameters
bi are drawn from a lognormal distribution with mean n+ 1 and standard deviation 0.1×

√
n+ 1, ci = 1, di = n.

(a) (b)

Figure S10: Examples of coevolutionary dynamics in the Tragedy of the Commons game with diminishing returns.
(a) No external influence. (b) Five runs with external influence promoting decreased effort at G = 1/n. Group size
n = 20, ε = 1. Different colors show different individuals. The thick black lines show the group averages. The
numbers on top show the number of contributing individuals at the last time step.
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Trade-offs between public and private production

In this game (Willinger and Ziegelmeyer, 1999, 2001, Laury and Holt, 2008, McGinty and
Milam, 2013) the payoff function is a sum of two components coming from public and private
production efforts:

πi(xi) = vi (BZ − 0.5DZ2)︸ ︷︷ ︸
collective production

+ biyi − 0.5diy
2
i︸ ︷︷ ︸

private payoff

,

where Z =
∑
xj, xi is the contribution to collective production and vi is the share/valuation

of this production for individuals i . The effort not invested in public production, yi = Ri−xi,
where Ri is a constant endowment of individual i, is invested in private production; bi and
di are the corresponding benefit and cost coefficients.

Following McGinty and Milam (2013), assume egalitarian division of pubic goods (i.e.
vi = 1/n) and that bi/di is a constant.

Then
dπi
dxi

= viB − bi + diRi︸ ︷︷ ︸
D0

− viD(n− 1)︸ ︷︷ ︸
D1

x̃− (di + viD)︸ ︷︷ ︸
D2

x.

In this model,

θi =
viB − bi + diRi

di + viDn
=
Ri + viB−bi

di

1 + nviD
di

≡ λi
1 + nκi

.

with the obvious meaning of λi and κi.
EGT analysis. The best response action for individual i is

xbr,i =
λi − κiX−i

1 + κi
. (S21a)

From its meaning, x must stay between 0 and R. Generalizing McGinty and Milam (2013)
approach under the assumption that all xbr,i > 0, I find that the total group effort at the
Nash equilibrium can be written as

Zne =

∑
λi

1 +
∑
κi
. (S21b)

while the individual effort is
xi,ne = λi − κiZne. (S21c)

General analysis. Figure S11 summarizes the properties of this model. Figure S12 shows
sample trajectories of the general model corresponding to Figure S11 with ε = 1.
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Figure S11: Properties of equilibria in the Trade-offs game. (a) No external influence. (b) With external influence
promoting effort G = 2. From top to bottom: equilibrium means, standard deviations, half-time of convergence to
an equilibrium τ , and Kendall correlation with θ for x, y, ỹ and x̃, respectively. The thin black horizontal lines show
the theoretical predictions for x. Parameter ε measures the importance of each of the normative factors relative to
material payoffs. Parameters: n = 50, bi are drawn from a lognormal distribution with mean 1 and variance 0.1,
Bm = 1, D = 1, d = 1, R = 2 while parameters vi are drawn from a broken stick distribution on [0, 1].

(a) (b)

Figure S12: Examples of coevolutionary dynamics in the Trade-offs Game corresponding to Figure S11. (a) No
external influence. (b) Five runs with external influence promoting decreased contribution to private production at
G = 1/n. Group size n = 50, ε = 1. Different colors show different individuals. The thick black lines show the group
averages. The numbers on top show the number of contributing individuals at the last time step.
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Games with linear payoff functions: Dictator, Take-or-Give, Rule Obedience,
and Public Goods

Linear payoff functions emerge in a number of simple games commonly used in experimental
economics research. Some examples are given next.

Dictator game. Here an individual with an endowment R decides on how much to give
to another individual. If xi is the donation, then the payoff function is π(xi, x̃i) = R − xi,
so that dπi/dxi = −1 and D0,i = −1.

Take-or-Give game. In this game (Bicchieri et al., 2020), each individual decided on
whether to contribute to a pool of money marked to be given to a charity (xi > 0) or
take the money from this pool for personal use (xi > 0). One can write the payoff as
π(xi, x̃i) = R− xi, so that dπi/dxi = −1 and D0,i = −1.

Rule Obedience game. In this game designed and studied by Kimbrough and Vostroknutov
(2016, 2019) individuals can follow verbal instructions (such as “wait for a crosswalk light to
turn green”) and earn a certain reward or ignore instructions and get a higher reward. Let
xi be the waiting time. Then the payoff function in this game can be written as π(xi, x̃i) =
R− xi, so that dπi/dxi = −1 and D0,i = −1.

Linear Public Goods game. In this classical game, the payoff function is

π(xi, x̃i) = vibZ − cixi, (S22)

where b, vi and ci are constant parameters. Then dπi/dxi = bvi− ci. A standard assumption
in behavioral studies is that D0,i = bvi − ci < 0.

In all these games, I predict that in the absence of additional forces, contributions xi and
attitudes yi and beliefs ỹi, x̃i will evolve to the minimum values, i.e. zero. However in the
presence of an external influence, the equilibrium contribution can be positive.

Figure S13a illustrates the properties of this model when G = 2. Figure S14 gives
examples of corresponding trajectories.
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Figure S13: (a) Linear Public Goods game with external influence with G = 2. Parameters: group size n =
100, D1 = D2 = 0 for all i while D0 are drawn from a uniform distribution on [−2, 0]. (b) Continuous Prisoner’s
Dilemma game with external influence with G = 2. Parameters: group size n = 50, D2 for all i while parameters
D0, D1 are drawn from lognormal distributions with mean −1 and 1, respectively, and standard deviation 0.1. These
expectations arise if the expectations of S, P,R and T and 0, 1, 3 and 5, respectively. From top to bottom: equilibrium
means, standard deviations, correlations with D0, and the half-time of convergence for x, y, ỹ and x̃, respectively. The
thin black horizontal lines show the theoretical predictions for x. Parameter ε measures the importance of each of the
normative factors relative to material payoffs. Statistics are calculated over 100 last time steps over 40 independent
runs each of length 1,000 time steps.

Figure S14: Examples of coevolutionary dynamics in the Linear Public Goods Game with external influence at
G = 2 corresponding to Figure S13a. Group size n = 100, ε = 1. Different colors show different individuals. The
thick black lines show the group averages. The numbers on top show the number of contributing individuals at the
last time step. Parameters D0 are chosen from a uniform distribution on [−2, 0]. D1 = D2 = 0 for all i.
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Continuous Prisoner’s Dilemma game

Verhoeff (1998) introduced a continuous variant of the Prisoner’s Dilemma which he called
the Trader’s Dilemma. In this game, each of the two players chooses an effort x within a
unit interval [0, 1]. The payoff to the player A who makes effort xA against player B who
makes effort xB can be written as

π(xA, xB) = xAxBR + xA(1− xB)S + (1− xA)xBT + (1− xA)(1− xB)P.

Parameters R, S, T, P correspond to the reward, sucker’s pay, temptation and punishment
payoffs in the standard Prisoner’s Dilemma (with T > R > P > S). One interpretation
of this game is that the players are trade partners. One of them bring a box of rice, the
other a box of beans. An action consists of exchanging boxes filled with a certain amount
of merchandise. Complete cooperation corresponds to bringing a box completely filled with
the promised merchandise. Complete defection corresponds to bringing an empty box.

Adopting this model to my framework, player i will expect a payoff which can be written
as

π(xi, x̃i) = xix̃iRi + xi(1− x̃i)Si + (1− xi)x̃iTi + (1− xi)(1− x̃i)Pi.

where I allow for heterogeneity in players payoffs. In this model,

D0 = Si − Pi < 0, D1 = Ti −Ri − Pi + Si, D2 = 0.

In this game, D0 − D1x̃i < 0 for all x̃i. Therefore the players will evolve to a state with
zero efforts in the standard game theoretic approach. The same outcome is predicted in my
model if there is no external influence. [Note that in games of partial cooperation studied by
Stark (2010), D1 > 0. In these games, defection dominates cooperation, but an intermediate
fraction of cooperators would maximize the group payoff.]

Figure S13b of the main text illustrates the properties of this model with external influ-
ence with G = 2. Figure S15 gives examples of corresponding trajectories.

Figure S15: Examples of coevolutionary dynamics in the continuous Prisoner’s Dilemma game with external
influence at G = 2 corresponding to Figure S13b. Group size n = 50, ε = 1. Different colors show different
individuals. The thick black lines show the group averages. The numbers on top show the number of contributing
individuals at the last time step.
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“Us v. nature” game

This game (Gavrilets, 2015, Gavrilets and Richerson, 2017) is similar to the linear public
goods game, except that the production function saturates at a constant level as the group
efforts increase:

P =
Z

Z + Z0

,

where Z0 is a constant half-effort parameter (at Z = Z0, the group produces half of the
maximum amount of resource). Because of the non-linearity of this game, my analytical
results do not apply and there is no analogue of parameter θ here.

EGT analysis. The best response effort in this game is

xi = max
[
0, Z0

(√
Ri − 1

)
− Z−i,prev

]
,

where Ri = bi/(ciZ0) is the ratio of the individual benefit and the group’s cost at half-effort.
In the symmetric case, the group effort at the Nash equilibrium is

Z∗sym = Z0(
√
R− 1).

In the asymmetric case, only the individual with the largest value of Ri will make an effort
while all other individuals will free-ride:

Z∗asym = Z0(
√

max (Ri)− 1).

General case. With additional normative forces, finding the normalized best response
effort requires one to solve the cubic:

bZ0 − (c− S1 + S2x)(Z0 + x+X−)2 = 0,

where S1 = A1y + A2ỹ + A3x̃ + A4G,S2 =
∑4

j=1Aj. This can be done numerically. Note
that all coefficients here except for Z0 are individual-specific.

Figure S16 illustrates the properties of this model. Figure S17 gives examples of corre-
sponding trajectories.
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Figure S16: Properties of equilibria in the “Us vs. nature” game. (a) No external influence. (b) With external
influence (G = 2). From top to bottom: mean, standard deviation, half-time of convergence to an equilibrium τ ,
and correlation with θ for x (purple), y (green), ỹ (blue) and x̃ (orange), respectively. Parameter ε measures the
importance of each of the normative factors relative to material payoffs in the utility function. Bars with no color mean
the corresponding correlations are statistically insignificant (at 0.05). Group size n = 32, b = 32n, c = 1, X0 = n/4.
Parameters vi are jointly drawn from a broken stick distribution on [0, 1]. Statistics are calculated over 40 independent
runs. The stars on top of the bars for ε = 0 mean that the actual values of standard deviations are 5 times larger
than shown.

(a) (b)

Figure S17: Examples of coevolutionary dynamics in the “us vs. nature” game. (a) No external influence. (b) Five
runs with external influence with G = 2. n = 32, ε = 1. The numbers on top show the number of contributing
individuals (with s > 0) at the last time step.
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