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SI-1 Conditional cooperation in a public goods game
Here we detail the derivation of the threshold behaviour basing the model off of Traxler
and Spichtig (2011) with some minor differences. Individuals within the community have
a choice to donate to the public good or not. As such, player imay donate at rate pi ∈ {0, 1}.
Those who donate do so at a cost c > 0. Players’ utilities in the community are composed
of a material utility and a relational utility, where the material utility is determined by the
proportion of cooperation in the community, p̄ =

∑
i∈N si/N , and all costs incurred by

the player, and the relational utility is a function of the difference between the expected
material utility of the focal player and their belief about the average material utility earned
by the other players within the community. Guilt is a potential relational utility. In the
case of file-sharing, users were aware of their own upload to download ratio for some
applications (Strahilevitz, 2003). As such, they would know how much they themselves
were cooperating relative to their perception of the mean level of cooperation. In some
applications, the panel showing this could not be hidden.

The material utility for player i in the community is

umi (pi, p̄) = bp̄− cpi, (SI.1)

where b > 1 is the benefit. The relational utility, uri (pi, qi), is a function of a player’s belief
of what others are doing, qi, and the action they take, pi. We assume that uri is increasing
with respect to pi. Let θi be a norm sensitivity parameter for player i (we will assume that
θi ≥ 0, though it could be negative for antisocial individuals). Then, the total expected
utility of player i is

ui(pi, qi) = bqi − cpi + θiu
r
i (pi, qi). (SI.2)
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A player will donate if ui(1, qi) > ui(0, qi), i.e.

θi >
c

uri (1, qi)− uri (0, qi)
. (SI.3)

Thus, player i can increase their utility by cooperating if they believe that a sufficient num-
ber of other players are cooperating (i.e. they are a conditional cooperator).

Consider a continuous probability distribution of θi with cumulative distribution func-
tion Φ(θ). Then, the proportion of individuals that cooperate given some qi is

F (qi) = 1− Φ

(
c

uri (1, qi)− uri (0, qi)

)
. (SI.4)

In the main text, we consider F to be the CDF of a normal distribution and that there are
two groups with different beliefs, qi: p̄ and q̂.

SI-2 Analysis of the model

SI-2.1 Derivation of the model
When interacting with other naive individuals, naive insiders become savvy at rate `(q̂−q).
And, when interacting with savvy individuals, naive insider become savvy at rate `(q̂−p).
Averaged across the insider population, the rate is `((q̂−q)(1−y)+(q̂−p)y) = `(q̂− p̄). i.e.
the rate at which a naive insider becomes savvy is proportional to the difference between
their expectations and reality. The equations for the compartmental model are:

Ṡ = ϕD − ι(X + Y )
S

K
, (SI.5)

Ḋ = ω(q̂ − p̄)Y − ϕD, (SI.6)

Ẋ = ι(X + Y )
S

K
− `(q̂ − p̄)X, (SI.7)

Ẏ = (q̂ − p̄)(`X − ωY ), (SI.8)

where D is the number of discouraged outsiders, X is the number of naive insiders, and
Y is the number of savvy insiders. We rewrite our system to be in terms of the number of
insiders, I = X +Y , and the proportion of savvy insiders, y = Y/I . We can determine the
dynamics for I as follows:

İ = Ẋ + Ẏ = ιI
S

K
− `(q̂ − p̄)X + (q̂ − p̄)(`X − ωY ) = ιI

S

K
− ω(q̂ − p̄)yI. (SI.9)

And, the dynamics for y can be derived as follows:

ẏ =
Ẏ

I
− Y İ

I2
= (q̂ − p̄)(`(1− y)− ωy)− ιy S

K
+ ω(q̂ − p̄)y2

= (q̂ − p̄)(1− y)(`− ωy)− ιy S
K
. (SI.10)
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Combining these equations with Ṡ and ṗ and substituting in D = K − S − I , I = X + Y ,
and y = Y/I gives us:

Ṡ = ϕ(K − S − I)− ιI S
K
, (SI.11)

İ = ιI
S

K
− ω(q̂ − p̄)yI, (SI.12)

ẏ = (q̂ − p̄)(1− y)(`− ωy)− ιy S
K
, (SI.13)

ṗ = F (p̄)− p. (SI.14)

SI-2.2 Stability of equilibria
Here we discuss the stability conditions for equilibria. To begin with, consider the bound-
ary equilibria (i.e. cases where I∗ = 0 or 1) and then the stability of the internal equilibria
(i.e. cases where S∗ > 0 and I∗ > 0).

SI-2.2.1 Stability of all insiders in the coordination dilemma

Theorem1. For the coordination game, the high cooperation equilibrium, (S∗, I∗, y∗, p∗) = (0, K, y∗ ∈
[0, 1], q̂) is stable.

Proof. Consider the Jacobian evaluated at this equilibrium,

J∗ =


−ϕ −ϕ− ι 0 0
ι 0 0 ωKy∗2

−ιy∗
K

0 0 (y∗2 − y∗)(`− ωy∗)
0 0 0 f(q̂)y∗ − 1

 . (SI.15)

The eigenvalues are −ϕ, −ι, 0, and f(q̂)y∗ − 1 ≤ f(q̂)− 1 < 0. But for the zero eigenvalue,
these are all negative. Further, the centre eigenspace corresponds to the y-axis. Thus the
equilibrium set is stable.

SI-2.2.2 Stability of the crash equilibrium for the cooperation dilemma

Theorem 2. IfR0 < 1 and f(p̄∗) < 1 for y∗ and p∗ such that (q̂− p̄∗)(1− y∗)(`−ωy∗)− ιy∗ = 0
and p∗ = F (p̄∗), then (S∗, I∗, y∗, p∗) = (K, 0, y∗, p∗) is attracting.

Proof. Though the model is not defined at (S∗, I∗) = (K, 0), we may find y∗ as the solution
to

lim
S→K

ẏ = (q̂ − p̄)(1− y)(`− ωy)− ιy

= ω(q − p)y3 + (ω(q̂ + p− 2q)− `(q − p))y2

+ (`(2q − p− q̂)− ω(q̂ − q)− ι)y + `(q̂ − q) = 0. (SI.16)
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Note that by Descartes’ rule of signs, if ω(q̂ + p − 2q) > `(q − p) and `(2q − p − q̂) >
ω(q̂− q) + ι, then there is no positive root. With y∗ we may find p∗. The Jacobian evaluated
at (K, 0, y∗, p∗) is

J∗ =


−ϕ −ϕ−ι 0 0
0 ι−ω(q̂−p̄∗)y 0 0

− ιy∗

K 0 (q−q̂)(ω−`y∗)+(p∗−q)(ω+(`−ω)y∗)y∗ y∗(y∗−1)(`−ωy∗)
0 0 (p∗−q)f(p̄∗) y∗f(p̄∗)−1

 .
(SI.17)

And, the characteristic polynomial of J∗ is

det(J∗ − λI) = ω(q̂ − p̄∗)(λ+ ϕ)(λ+ 1−R0)(λ
2 − (j33 + j44)λ+ j33j44 − j34j43), (SI.18)

where jij ∈ J . −(j33 + j44) > 0, since j33 < 0 and j44 < 0. Further, if f(p̄∗) < 1, then

j33j44 − j34j43 =
(

(q̂ − q)(ω − `y∗) + (q − p∗)(ω + (`− ω)y∗)y∗
)

(1− y∗f(p̄∗))

− y∗(1− y∗)(`− ωy∗)(q − p∗)f(p̄∗)

≥ (q − p∗)
(

(ω + (`− ω)y∗)y∗ − `(1− y + y2)y∗f(p̄∗)
)

> (q − p∗)
(

(ω + (`− ω)y∗)y∗ − `(1− y + y2)y∗
)

= (q − p∗)y∗(1− y∗)(ω + `y∗) > 0. (SI.19)

Therefore, combined withR0 < 1, we have that all eigenvalues are negative and thus this
state is attracting.

SI-2.2.3 Stability of internal equilibria

Now consider the internal equilibria (i.e. I, S ∈ (0, 1)):

S∗ =
K

R0

, (SI.20)

I∗ = K
R0 − 1

R0 + ι/ϕ
, (SI.21)

y∗ =
`

`+ ω
, (SI.22)

p∗ = F (p̄∗), (SI.23)

which exist if R0 > 1. We begin with a necessary, but not sufficient, theorem for stability,
and follow with some numerical results.

Theorem 3. For an internal equilibrium, if y∗f(p̄∗) ≥ 1, then the equilibrium cannot be stable.
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Proof. The Jacobian evaluated at these equilibria is

J∗ =


−ϕ−ι I∗K −ϕ−ιS∗

K 0 0

ι I
∗

K 0 −ω(q̂−q+2(q−p∗)y∗)I∗ ωI∗y∗2

−ιy
∗

K 0 −(q̂−q)(`+ω(1−y∗))−(q−p∗)(`−2(`−ω)y∗)y∗ −y(1−y)(`−ωy)
0 0 −(q−p∗)f(p̄∗) y∗f(p̄∗)−1



=


−j1 −j2 0 0
j3 0 −j4 j5
−j6 0 −j7 −j8

0 0 −j9 −j10

 . (SI.24)

Here we represent the elements of J∗ with ji > 0. Note that for j7 we have substituted
ιS∗/K = ω(q̂− p̄∗)y∗ to simplify the expression. Stability can be determined by the Routh-
Hurwitz criteria. These conditions for our system are:

a3 = j1 + j7 + j10 > 0, (SI.25)
a2 = j2j3 + j1j7 + j1j10 + j7j10 − j8j9 > 0, (SI.26)
a1 = j2(j4j6 + j3(j7 + j10)) + j1(j7j10 − j8j9) > 0, (SI.27)
a0 = j2(j6(j5j9 + j4j10) + j3(j7j10 − j8j9)) > 0, (SI.28)
a1(a2a3 − a0)− a0a23 > 0, (SI.29)

where ai are the coefficients of the characteristic polynomial P (λ) =
∑n

0 anλ
n of J∗. Note

that
a0 = j2

(
(j5j6 − j3j8)j9 + (j4j6 + j3j7)j10

)
= j2

(
(ωy∗2 − (1− y∗)(`− ωy∗))ιI

∗y∗j9
K

+ (j4j6 + j3j7)j10

)
= j2

((
`ω

`+ ω
− `ω

`+ ω

)
ιI∗y∗j9
K

+ (j4j6 + j3j7)j10

)
= j2(j4j6 + j3j7)(1− y∗f(p̄∗)). (SI.30)

If y∗f(p̄∗) ≥ 1, then a0 ≤ 0 and the state cannot be stable. Thus, so long as y∗f(p̄∗) < 1,
the equilibrium can be stable. Note that this is a necessary, but not sufficient, condition for
stability.

We numerically explored the existence and stability of equilibria across parameter
space using the Routh-Hurwitz criteria (Inequalities SI.28-SI.29) and Theorem 2. Figures
SI-1 and SI-2 summarize the impact of the parameters, qualitatively, for the coordination
and cooperation dilemmas, respectively. For the coordination dilemma, we observe that
increasing ` can result in the emergence of interior equilibria as well as the system crashing
from the single high cooperation equilibrium (Figure SI-1a and SI-1d). ω has the opposite
effect; decreasing it can result in the emergence of such equilibria (Figure SI-1b and SI-1d).
Notice that for some areas of parameter space, we must traverse the regime with crashing
to move from the two non-crashing stable equilibria regime to the sole high cooperation
stable equilibrium regime. Varying ϕ has no effect on the qualitative nature of the system
here.
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(a) (b) (c)

(d) (e) (f)

Figure SI-1: Here we plot the qualitative behaviour of the coordination dilemma model across
parameter space. We observe the stable high cooperation equilibrium either alone (in grey),
with a stable interior point (black), and with a stable crash equilibrium (orange). The default
values are ι = ϕ = 0.05, ` = 1, and ω = 0.1. These give us ω/` = 0.1, where the two interior
equilibria can exist. Stability is determined by the Routh-Hurwitz criteria (Inequalities SI.25-
SI.29) and Theorem SI-3.

For the cooperation dilemma, Figure SI-2, we observe a variety of affects of the param-
eters on the qualitative behaviours the system can have. Increasing ι and decreasing ` can
pull us from regimes that feature crashing to ones that do not (Figures SI-2a-SI-2c). The
intuition behind these results comes from noting thatR0 increases/decreases with respect
to ι/`. Varying ι and ` can also take us through two other regimes, namely the cycling and
two stable interior equilibria regimes. In the cycling regime, we find that no equilibria
are stable. We verified through numerical simulations that we observe cycling here. Our
figures do not, however, show all regions where cycling can occur. For example, we can
have a cycle along with a stable fixed point as shown in Figure 8a of the main manuscript,
and thus cycling is possible in the other regimes depicted here.

We discussed the roles of ` and ω on the community size in Figure 6 of the main

6



(a) (b) (c)

(d) (e) (f)

Figure SI-2: Here we plot the qualitative behaviour of the cooperation dilemma model across
parameter space. We observe cycling (turquoise), one stable interior equilibrium either (grey),
two stable interior equilibria (black), only the crashing equilbirium (red), and stable interior
and crashing equilibria (orange). The default values are ι = ϕ = 0.5 and ` = ω = 1. Stability is
determined by the Routh-Hurwitz criteria (Inequalities SI.25-SI.29) and Theorem SI-3.

manuscript. In Figure SI-2d, we see that the two stable equilibria regime is observed for
intermediate values of ` vs. ω. For higher or lower values of these parameters, we only ob-
serve one stable equilibrium. Finally, in Figures SI-2e and SI-2f, we observe that reducing
ϕ can result in cycling when ω/` is low. However, if ω/` is too low, we will have a stable
interior equilibrium.

SI-3 Community crashing in the coordination dilemma
Figure SI-3 plots the effects of different parameters on the existence of the crashing state
for the coordination dilemma. We observe similar qualitative results to the cooperation
dilemma; the community crashes for sufficiently low inflow, high learning, and interme-
diate outflow rates. Our observation on hysteresis is also applicable here, and more dra-
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(a) (b)

(c)

Figure SI-3: The parameters ι, `, and ω (columns 1-3, respectively) determine whether or not
the community may crash. (a) Below the threshold ι∗, the community can crash, and above it, it
cannot. Here the parameters are ` = ω = ϕ = 1. (b) Above the threshold `∗, the community can
crash, and below it, it cannot. Here the parameters are ι = 0.1 and ω = ϕ = 1. (c) For intermedi-
ate ω, between ω∗1 and ω∗2 , the community can crash. Outside of this window, it cannot. Here the
parameters are ι = 0.1 and ` = ϕ = 1. The solid black and dashed magenta curves represent the
stable and unstable equilibria, respectively, while the dotted lines mark qualitative changes in
the system.
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matic though less surprising as this is a coordination dilemma. One noticeable difference
between the two dilemmas, however, is that community crashing cannot be globally stable
here (due to Theorem 1).
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