
Supplementary information 

Cotinine cutoff 
The	cotinine	concentration	distributions	of	users	and	non-users	overlap.	Non-users	of	
tobacco	can	have	non-zero	concentrations	of	salivary	cotinine	due	to	exposure	to	
environmental	tobacco	smoke	(ETS),	or,	in	a	tobacco-producing	region	such	as	this,	from	
handling	tobacco	leaves	without	protection.	Tobacco	users,	on	the	other	hand,	can	have	low	
concentrations	of	salivary	cotinine	if	they	have	not	recently	used	tobacco	(the	half-life	of	
cotinine	is	about	18	hours).	Because	some	individuals	misreport	their	tobacco	use,	it	can	be	
challenging	to	distinguish	users	from	non-users	based	on	cotinine	concentrations	alone.	A	
wide	range	of	cutoffs	that	attempt	to	optimize	sensitivity	vs.	specificity	have	been	reported	
in	different	studies	and	different	ethnic	groups,	in	part	because	levels	of	ETS	have	changed	
over	time	(generally	decreasing	due	to	tobacco	control	efforts),	and	cotinine	
concentrations	in	non-users	have	therefore	also	changed	over	time	(Kim,	2016).	To	our	
knowledge,	there	is	no	study	of	the	optimal	cotinine	cutoff	value	in	a	large,	representative	
sample	of	the	Indian	population.	We	therefore	estimated	an	optimal	value	from	our	data	
and	compared	it	to	the	3	ng/ml	value	reported	in	a	large,	representative	study	of	US	oral	
tobacco	users	(N	=	30,298;	Agaku	&	King,	2014).	

In	our	study,	cotinine	concentrations	were	bimodally	distributed	(see	Figure	S1).	We	
therefore	fit	a	Gaussian	mixture	model	to	log	10	cotinine	values	using	the	mixtools	package	
(Benaglia,	Chauveau,	Hunter,	&	Young,	2009).	Gaussian	mixture	models	assume	that	each	
observation	is	generated	by	one	of	𝐾	mixture	components	with	probability	𝜋! ,	where	each	
component	is	a	Gaussian	distribution,	𝑁(𝜇! , 𝜎!).	The	parameters	{𝜇! , 𝜎! , 𝜋!}	are	estimated	
from	the	data	using	the	iterative	expectation-maximization	(EM)	algorithm	(for	details,	see	
Benaglia	et	al.,	2009).	In	our	data,	using	the	default	settings,	the	normalmixEM	function	
determined	that	there	were	𝐾 = 2	components,	which	we	interpreted	as	tobacco	non-users	
(left)	vs.	users	(right).	See	Figure	S1.	

	

Figure	S1:	Histogram	of	log	10	cotinine	concentrations	overlaid	with	the	two	Gaussian	
components	(red,	green)	estimated	from	the	data	using	the	normalmixEM	function	from	
mixtools.	



We	plotted	the	probability	that	each	observation	was	generated	by	each	component.	The	
cotinine	value	for	which	there	was	an	equal	probability	of	belonging	to	the	left	vs.	right	
component	was	6.5	ng/ml	(dotted	line,	Figure	S2),	i.e.,	women	with	cotinine	concentrations	
less	than	this	were	more	likely	to	belong	to	the	non-user	component,	whereas	those	with	
concentrations	greater	than	this	were	more	likely	to	belong	to	the	user	component.	

	

Figure	S2:	Probabilities	of	belonging	to	the	non-user	(left)	vs.	user	(right)	component	based	
on	cotinine	concentration.	The	dotted	line	represents	the	cotinine	concentration	for	which	
there	was	an	equal	probability	of	belonging	to	either	component.	

The	6.5	ng/ml	value	is	close	to	the	optimal	3	ng/ml	cutoff	estimated	from	the	large	US	
study.	Although	the	6.5	ng/ml	value	has	the	advantage	of	being	estimated	directly	from	the	
population	in	this	study,	it	has	the	disadvantage	of	being	based	on	a	small,	non-
representative	sample.	Using	the	6.5	ng/ml	value	also	did	not	substantially	change	the	
percent	of	women	who	under-reported	their	tobacco	use,	31%,	vs.	35%	for	the	3	ng/ml	
value.	We	therefore	chose	to	use	the	3	ng/ml	cutoff	to	distinguish	probable	non-users	of	
tobacco	from	probable	users.	

Post-hoc power analysis 
At	the	request	of	the	editor	we	conducted	a	post-hoc	power	analysis	of	the	effect	of	the	
intervention	on	cotinine	concentrations	in	the	treatment	vs.	control	groups.	We	did	not	
conduct	a	power	analysis	prior	to	the	study	because	we	had	very	little	information	on	the	
proportion	of	female	tobacco	users	in	this	population,	the	distributions	of	cotinine	
concentrations,	or	the	extent	to	which	women	were	aware	of	the	harms	of	tobacco	use.	

Using	information	acquired	in	this	study,	we	estimated	power	curves	using	simulations	as	
follows.	In	our	sample,	half	the	women	were	non-users	and	half	were	users.	We	used	the	
parameters	of	the	two	Gaussian	distributions	of	log	cotinine	among	non-users	and	users,	
respectively,	as	estimated	by	the	mixture	model	(Figure	S1),	to	simulate	baseline	cotinine	
values	for	equal	numbers	of	non-users	and	users.	We	then	randomly	assigned	equal	
numbers	of	simulated	participants	to	the	RHP	treatment	and	GHP	control	conditions.	We	
computed	followup	cotinine	as	a	linear	function	of	baseline	cotinine,	condition,	their	



interaction,	and	a	Gaussian	error	term	(residual	error),	similar	to	our	actual	linear	
regression	analysis	(except	without	a	Trimester	term).	

𝑐𝑜𝑡𝑖𝑛𝑖𝑛𝑒"#$$#%&' = 𝛽( + 𝛽)𝑐𝑜𝑡𝑖𝑛𝑖𝑛𝑒*+,-$./- + 𝛽0𝑅𝐻𝑃 + 𝛽1𝑐𝑜𝑡𝑖𝑛𝑖𝑛𝑒*+,-$./-𝑅𝐻𝑃 +𝒩(0, 𝜎)	

We	computed	power	using	three	sets	of	parameters	for	the	linear	function.	First,	we	used	
the	parameters	estimated	from	our	real	(non-simulated)	data	(very	similar	to	those	
reported	in	Table	2,	Cotinine	2	model,	except	without	a	Trimester	term).	Important	
disadvantages	of	these	parameters	are	that	(1)	they	are	noisy	estimates	of	the	true	
parameters,	e.g.,	of	the	effect	of	the	presentation	on	the	slope	(the	interaction	term),	and	
hence	there	will	be	substantial	uncertainty	in	the	estimate	of	power,	and	(2)	the	estimated	
negative	effect	of	the	presentation	on	the	slope	was	very	likely	biased	toward	a	more	
negative	value	due	to	selection	based	on	statistical	significance.	In	addition,	these	
parameters	were	surprising	from	a	theoretical	perspective.	We	predicted	that	the	
coefficient	of	baseline	cotinine,	𝛽),	would	be	about	1.	Instead,	it	was	about	2,	i.e.,	the	
cotinine	concentrations	of	participants	in	the	GHP	condition	were	about	double	their	
baseline	levels.	The	effect	of	the	RHP	condition	was	to	reduce	this	effect	by	about	75%	(the	
coefficient	of	the	interaction	term,	𝛽1,	was	about	-1.5).	The	power	to	detect	the	(likely	
biased)	effect	of	the	RHP	condition,	i.e.,	the	p-value	for	𝛽1,	with	our	sample	size	of	66,	and	
𝛼 = 0.05	was	very	high,	95%.	See	Figure	S3.	

The	second	set	of	parameters	more	closely	matched	our	theoretical	expectations,	with	a	
coefficient	for	baseline	cotinine,	𝛽) = 1,	an	important	negative	effect	of	the	RHP	of	𝛽1 =
−0.75,	and	residual	variation	as	seen	in	our	data	(𝜎 = 169).	For	our	sample	size,	the	power	
was	modest,	63%.	

The	third	set	of	parameters	reflected	a	small	effect:	a	coefficient	of	baseline	cotinine,	𝛽) =
1,	an	interaction	term,	𝛽1 = −0.5,	and	residual	variation	as	seen	in	our	data	(𝜎 = 169).	For	
our	sample	size,	the	power	was	low,	42%.	

	

Figure	S3:	Power	versus	sample	size	for	three	sets	of	parameters	and	𝛼 = 0.05	(see	text).	

We	conclude	that,	given	the	actual	prevalence	of	tobacco	use	among	women	in	this	
population	and	their	distribution	of	cotinine	concentrations,	our	study	was	highly	powered	



to	detect	the	effect	we	found,	modestly	powered	to	detect	a	theoretically	motivated	
substantial	effect,	and	poorly	powered	to	detect	a	theoretically	motivated	small	effect.	

Exploratory elasticnet model of sociodemographic predictors of 
tobacco use 
As	described	in	the	main	text,	we	defined	probable	nontobacco	users	as	participants	who	
had	cotinine	values	< 3𝑛𝑔/𝑚𝑙	at	both	baseline	and	followup.	The	remaining	participants	
were	classified	as	probable	users.	To	explore	sociodemographic	predictors	of	tobacco	user	
status,	we	fit	an	elasticnet	logistic	regression	model	with	mixing	parameter	𝛼 = 0.2	and	𝜆	
chosen	by	cross-validation	(Friedman	et	al.,	2010).	

We	briefly	describe	the	elasticnet	regression	model.	Standard	regression	models	are	fit	by	
minimizing	an	objective	function.	In	ordinary	least	squares	regression,	the	objective	
function	is	the	residual	sum	of	squares	(𝑅𝑆𝑆),	and	in	logistic	regression	it	is	the	negative	
log-likelihood,	−𝑙𝑜𝑔𝑙𝑖𝑘(𝛽).	Penalized	regression	models	instead	minimize	the	objective	
function	plus	a	penalty	term	based	on	the	magnitude	of	the	coefficient	vector	(Le	Cessie	&	
Van	Houwelingen,	1992).	For	linear	regression	this	is	

1
2𝑅𝑆𝑆/𝑛 + 𝜆 ∗ 𝑝𝑒𝑛𝑎𝑙𝑡𝑦	

and	for	logistic	regression:	

−𝑙𝑜𝑔𝑙𝑖𝑘(𝛽)/𝑛 + 𝜆 ∗ 𝑝𝑒𝑛𝑎𝑙𝑡𝑦	

	

There	are	two	popular	forms	of	penalized	regression:	ridge	regression	and	lasso	
regression.	For	ridge	regression	the	penalty	is	||𝛽||00 = ∑ 𝛽20

'
23) ,	where	the	𝛽2 	are	the	

regression	coefficients,	and	for	lasso	regression	the	penalty	is	||𝛽||) = ∑ |'
23) 𝛽2|.	When	𝜆 =

0,	this	reduces	to	the	standard	estimation.	As	𝜆 → ∞,	the	coefficients	𝛽2 	are	“shrunk”	to	0.	
Thus,	when	𝜆	is	small,	the	𝛽𝑠	are	relatively	unrestricted,	which	can	result	in	a	good	fit	to	the	
current	sample	(low	bias),	but	a	poor	fit	on	future	samples	(high	variance);	roughly,	the	
model	will	tend	to	be	over-fitted.	When	𝜆	is	large,	the	𝛽𝑠	tend	to	shrink	toward	0,	which	
reduces	fit	on	the	current	sample	(high	bias)	but	results	in	a	more	stable	fit	across	samples	
(low	variance);	roughly,	the	model	will	tend	to	be	under-fitted.	The	optimal	value	of	𝜆	is	
typically	found	by	minimizing	cross-validation	error.	

With	the	lasso	penalty,	some	coefficients	might	be	set	to	0,	i.e.,	dropped	from	the	model,	
which	aids	interpretation,	but	when	variables	are	correlated,	the	lasso	might	drop	some	
that	are	genuinely	related	to	the	outcome.	In	ridge	regression,	in	contrast,	the	coefficients	
of	correlated	variables	are	shrunk	to	similar	values;	although	the	coefficients	of	some	
predictors	might	be	very	small,	all	predictors	are	retained	in	the	model,	which	can	make	
interpretation	difficult.	

	



Elastic	net	regression	combines	the	advantages	of	ridge	and	lasso	penalties	using	an	
additional	tuning	parameter	𝛼,	0 ≤ 𝛼 ≤ 1:	

𝑝𝑒𝑛𝑎𝑙𝑡𝑦 = (1 − 𝛼)||𝛽||00/2 + 𝛼||𝛽||).	

Thus,	𝛼 = 0	is	the	ridge	penalty	and	𝛼 = 1	is	the	lasso	penalty.	With	intermediate	values	of	
𝛼,	there	is	a	‘grouping’	effect	in	which	strongly	correlated	variables	tend	to	enter	or	leave	
the	model	together	(i.e.,	have	their	coefficients	set	to	0).	

We	used	elastic	net	regression	to	fit	a	logistic	regression	model	of	tobacco	use	status	as	
functions	of	our	sociodemographic	variables.	Following	standard	procedure,	we	used	10-
fold	cross-validation	to	find	the	optimum	value	of	𝜆,	i.e.,	the	one	that	minimized	cross-
validation	error.	We	standardized	our	continuous	variables	(age,	income,	education	years,	
number	of	children,	domestic	and	non-domestic	hours	worked,	and	number	of	harms	
freelisted	at	baseline)	by	two	standard	deviations	to	approximate	the	standard	deviations	
of	our	binary	variables	(married,	pregnant,	arranged	marriage,	and	tobacco	use	by	mother,	
mother-in-law,	family,	and	friends),	which	improves	comparisons	of	the	coefficients	of	all	
variables	(Gelman,	2008).	See	Figure	S4.	

	

Figure	S4:	Logistic	elasticnet	regression	coefficients	of	tobacco	user	status,	fit	using	glmnet	
with	𝛼 = 0.2	and	𝜆	chosen	by	cross-validation.	Continuous	variables	were	centered	and	scaled	
by	two	standard	deviations	(see	text).	N=65	

Exploratory model of followup cotinine as a function of changes in 
numbers of free-listed harms from baseline to followup. 
Individuals	who	exhibited	the	greatest	increases	in	number	of	free-listed	harms	at	followup	
were	arguably	most	heavily	influenced	by	the	presentations.	We	therefore	fit	an	
exploratory	mixed	effects	linear	regression	model	of	log10	followup	cotinine	as	a	function	
of	the	changes	in	numbers	of	free-listed	general	harms	and	reproductive	harms,	controlling	
for	log10	baseline	cotinine	and	Presentation.	Increases	in	the	numbers	of	free-listed	
reproductive	harms,	but	not	general	harms,	were	negatively	associated	with	followup	
cotinine.	See	Table	S1.	



	 Log10	Cotinine	
(Intercept)	 -0.03	(0.25)	
Trimester	2	 0.20	(0.31)	
Trimester	3	 0.19	(0.33)	
Not	pregnant	 0.18	(0.25)	
RHP	 0.40*	(0.18)	
Δ	Number	of	reproductive	harms	 -0.29**	(0.10)	
Δ	Number	of	general	harms	 0.02	(0.06)	
Num.Obs.	 65	
*	p	<	0.05,	**	p	<	0.01,	***	p	<	0.001	 	

Table	S1:	Linear	mixed	effects	model	of	log10	followup	cotinine	concentration	as	a	function	
of	the	changes	in	numbers	of	general	and	reproductive	harms	free-listed	at	followup	
compared	to	baseline,	controlling	for	log10	baseline	cotinine	and	presentation	condition.	
Values	are	estimated	coefficients	(standard	errors).	

	

Figure	S5:	Effects	plot	for	a	regression	model	of	log10	cotinine	concentration	versus	the	
change	in	number	of	(A)	general	harms	and	(B)	reproductive	harms	mentioned	at	followup	
compared	to	baseline	(see	Table	S1).	

	  



Logistic regression model of sharing presentation 
	

	

Figure	S6:	Logistic	regression	model	of	the	effect	of	presentation	type	and	the	number	of	
harms	free-listed	at	followup	on	self-reported	sharing	of	presentation	with	others.	Base	level	
is	‘Did	not	share’.	For	regression	coefficients,	see	Table	2,	model	Share	presentation.	
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Expanded table of regression models 
This	table	displays	the	coefficients	of	the	same	regression	models	as	Table	2,	but	adds	z-
values,	full	p-values,	and	95%	CI’s.	

Variable	 Estimate	 SE	 Z-value	 P-value	 Lower	95%	CI	 Upper	95%	CI	
Tobacco	self-report	

(Intercept)	 -1.46	 1.03	 -1.42	 0.16	 -3.49	 0.562	
Trimester	2	 -0.12	 1.41	 -0.09	 0.93	 -2.89	 2.65	
Trimester	3	 1.12	 1.11	 1.01	 0.31	 -1.05	 3.3	
Not	pregnant	 1.23	 1.05	 1.18	 0.24	 -0.822	 3.29	
RHP	 -0.32	 0.52	 -0.63	 0.53	 -1.33	 0.687	
Baseline	Tobacco	Frequency	 0.07	 0.03	 2.23	 0.026	 0.00808	 0.125	
Baseline	Tobacco	Frequency	*	RHP	 0.04	 0.03	 1.18	 0.24	 -0.0265	 0.107	

Cotinine	1	
(Intercept)	 -24.84	 74.28	 -0.33	 0.74	 -170	 121	
Trimester	2	 22.22	 94.97	 0.23	 0.82	 -164	 208	
Trimester	3	 77.73	 100.41	 0.77	 0.44	 -119	 275	
Not	pregnant	 98.91	 77.21	 1.28	 0.21	 -52.4	 250	
RHP	 -15.59	 51.5	 -0.3	 0.77	 -117	 85.3	
Baseline	cotinine	 1.13	 0.24	 4.79	 1.2e-05	 0.67	 1.6	

Cotinine	2	
(Intercept)	 -146.33	 71.73	 -2.04	 0.041	 -287	 -5.74	
RHP	 63.14	 50.02	 1.26	 0.21	 -34.9	 161	
Trimester	2	 129.97	 85.42	 1.52	 0.13	 -37.5	 297	
Trimester	3	 177.07	 89.29	 1.98	 0.047	 2.06	 352	
Not	pregnant	 175.44	 70.75	 2.48	 0.013	 36.8	 314	
Baseline	cotinine	 2.47	 0.39	 6.27	 3.6e-10	 1.7	 3.25	
Baseline	cotinine	*	RHP	 -1.87	 0.47	 -3.96	 7.6e-05	 -2.79	 -0.941	

Number	of	harms	
(Intercept)	 0.78	 0.27	 2.91	 0.0036	 0.254	 1.3	
Trimester	2	 0.12	 0.34	 0.35	 0.72	 -0.543	 0.782	
Trimester	3	 -0.21	 0.36	 -0.59	 0.56	 -0.908	 0.49	
Not	pregnant	 0.11	 0.27	 0.41	 0.68	 -0.413	 0.631	
RHP	 -0.7	 0.18	 -3.88	 1e-04	 -1.05	 -0.346	
Baseline	number	of	harms	 0.03	 0.08	 0.42	 0.67	 -0.127	 0.197	
Number	of	reproductive	harms	 -2.62	 0.4	 -6.47	 1e-10	 -3.41	 -1.82	
Number	of	reproductive	harms	*	RHP	 2.38	 0.45	 5.29	 1.2e-07	 1.5	 3.27	

Share	presentation	
(Intercept)	 -0.13	 1.51	 -0.09	 0.93	 -3.1	 2.83	
RHP	 1.04	 0.94	 1.1	 0.27	 -0.81	 2.89	
Trimester	2	 -0.18	 1.71	 -0.1	 0.92	 -3.52	 3.17	
Trimester	3	 -1.75	 1.59	 -1.1	 0.27	 -4.86	 1.36	
Not	pregnant	 -1.11	 1.44	 -0.77	 0.44	 -3.93	 1.72	
Total	number	of	harms	at	followup	 1.1	 0.41	 2.69	 0.0071	 0.298	 1.9	

	
Table	S2.	Regression	coefficients,	standard	errors,	z-values,	p-values,	and	95%	confidence	
intervals	for	the	models	described	in	the	main	text	and	displayed	in	Table	2.	


