
Supplementary Materials of
“Classifying Evolutionary Forces in Language Change

Using Neural Networks”

Folgert Karsdorp1 , Enrique Manjavacas2 , Lauren Fonteyn3 , and Mike Kestemont2

1Royal Netherlands Academy of Arts and Sciences, Meertens Institute, Amsterdam, The Netherlands
2Department of Literature, University of Antwerp, Antwerp, Belgium

3Leiden University Centre for Linguistics, Leiden University, Leiden, The Netherlands

October 5, 2020

1 Introduction
This document supplements the paper “Classifying Evolutionary Forces in Language Change
Using Neural Networks”. The document provides extensive details about the architecture of
the neural networks, the generation of training data, the training procedure, and the parameters
used to train the machine learning models. Additionally, we have supplemented all steps with
Python code blocks to increase conceptual and technical understanding of the procedure, thus
enabling other researchers to reproduce our resultsmore easily aswell as to apply the approach
to their own work.

2 A Machine Learning Approach to Time Series Classification
In the paper, we conceptualize the task of detecting evolutionary forces in language and cultural
change as a binary time series classification (TSC) task. To this end, we resort to a sequence
classifier which will map an input in the form of a time series to one of two category labels
(i.e. 0 for the absence and 1 for the presence of selection pressure in a time series). Formally,
given a training data set D consisting of n pairs of time series X and their corresponding label
vector y ∈ 0, 1, i.e., D = (X1, y1), (X2, y2), . . . , (Xn, yn), the task of TSC is to learn a mapping
function f (X) for the input series to the output labels. By convention, we assume yi = 1 when
Xi was produced under selection forces, and yi = 0 otherwise. Throughout, we will refer to
the ground truth labels in the training data as y and refer to the predicted labels as ŷ.

Because we work with univariate time series, X will be a two-dimensional matrix of dimen-
sionality (number of time series x number of timesteps); that of ŷ will be (number of time series x
number of classes). Note that the present work considers a binary, one-class categorization task,
which explains why ŷ is a one-dimensional vector (instead of a matrix). The network function
f is controlled (or “parametrized”) by a set of free parameters (Θ) that can be updated in the
light of a given loss criterion or objective function that has to be minimized (see below).

1

2.1 Neural networks
The approach presented in the paper employs a Residual neural network (He et al. 2016), which
has been successfully applied in the context of time series classification (Fawaz et al. 2019;Wang
et al. 2016). In this section, we explain the various building blocks of this architecture in more
detail. These are all standard components that are well established in the literature and imple-
mented in all of the dominant frameworks for neural network research.

2.2 The Multi-Layer Perceptron
Before we describe the details of the Residual Networks, it might serve readers less familiar
with the neural network literature to first briefly discuss a simpler network, the perceptron,
and its extension, the multi-layer perceptron. The perceptron uses a single, linear projection to
map the input matrix X straight onto ŷ. The perceptron is parameterized by Θ, i.e. a weight
matrix (W) and a bias vector (b) associatedwith the affine projection of the input: ŷ = fθ(X) =
WX + b. The dimensionality of W and b must be defined so that they are compatible with X.
Themulti-layer perceptron is an intuitive extension of the simple perceptron, where a series of
n perceptrons or “layers” (< l1, l2, ..., ln−1, ln >) are stacked on top of one another. Each layer
(li) will pass on its own output as the input for the next perceptron (li+1) in a feedforward
fashion, until finally, the output layer has been reached. In such cases, the function f can be
rewritten as: f (X) = (ln(ln−1(. . . l2(l1(X)))). The intermediate layers between the input and
output in such a network are commonly called “hidden” layers. Mathematically, this model
corresponds to a series of functions that are iteratively wrapped inside one another.

Each of these hidden layers is a discrete unit that can represent its own series of mathemat-
ical operations (as long as the resulting function is differentiable). Consequently, each layer
is also parameterized by its own set of parameters Θi ∈< Θ0, Θ1, ..., Θn−1, Θn >. Inside a sin-
gle layer, the basic projection WX + b is moreover often followed by a (non-linear) activation
function, such as the sigmoid function, to normalize the output into a more suitable range or
distribution. Another widely used nonlinearity, also applied in the current paper, is the rec-
tified linear unit (ReLU), a element-wise activation function that sets all negative values in a
given matrix L to zero (i.e. max(0, L)). Finally, many layers implement a procedure known as
“Batch Normalisation”, which primarily functions as a regularization method.

2.3 Skip connections
The neural network architecture adopted in the paper makes use of residual connections (He
et al. 2016): these extend the simple feedforward architecture, in which a given layer li can only
directly feed the next layer (li+1). Residual networks keep the base mechanism of feedforward
networks, but additionally allow for what is known as ‘skip connections’ between layers. This
implies that a layer li can directly influence the input to layer li>i+1, thus effectively bypassing
a number of layers in the stack. There exist several mechanisms to implement this concept.
Consider a residual block of 4 hidden layers (< l1, ..., l4 >) with the same dimensionality, in
which we let l1 skip two layers and directly affect the input to l4. Then, a possible implementa-
tion would be: l4(X) = l4(l1(x) + l3(l2(l1(X)))). Here, the output of l1 is directly passed to l2,
which itself feeds into l3, as normal. The output of l3, however, is subsequently summed with
the original, unaltered output of l1 (via an element-wise addition), before the result is eventu-
ally passed on as the input to l4. This flow ensures that lower-level information can play a role
in higher-level regions in the networks (and thus, for instance, cancel out lingering “residual”
information).

2

2.4 Convolutions
Convolutional layers consist of a bank of filters (LeCun et al. 1998), that each independently
apply a linear projection to the input layer (and, consequently, each filter comeswith its own set
of parameters Θ). There are three key distinctions with respect to a conventional linear layer,
however. First of all, convolutional filters have a smaller receptive field: they are applied to
a smaller slice of the input vector (i.e. a small number of timesteps in the case of univariate
time series). This means that they are apt at extracting local features from the input, but are
not sensitive to larger-scale trends in the time series. Secondly, the dimensionality of the time
series can be severely affected, because there are multiple filters in a convolutional layer, that
each get applied to the consecutive local segments in the time series. The original univariate
time series, then, effectively becomes a multivariate time series after the convolutional opera-
tion, with a dimensionality equal to the number of filters applied. Thirdly – and this is a crucial
characteristic – the same filter will get iteratively applied across various segments in the time
series. This process is known as weight sharing, which ensures that the convolutional feature
extraction is spatially invariant: the main idea supporting this approach is that the exact posi-
tion of a particular feature in the time series should notmatter and should be detectedwherever
it appears.

How the input is convolved is determined by a collection of manually set hyperparameters,
including the number of filters in the layer, the length of the receptive field and the ‘hop length’
or ‘stride’ (≥ 1) in between consecutive applications of a filter. Naturally, these parameters will
also affect the changing dimensionality of the input as it is fed through the network. Typically,
stacks of convolutions are construed in a pyramidal fashion, so that the number of effective
time steps in the original series is gradually reduced in the network. In this way, stacks of con-
volutional layers can become increasingly sensitive to larger-scale trends in the original signal.
Mathematically, we shall denote a convolutional layer using the operator (⊗): y = W ⊗ X + b.
Nowadays, convolutions are very common in machine learning, but they constitute a complex
topic that cannot be fully covered here. For details, we therefore refer the many handbooks in
the field, such as (Goodfellow et al. 2016). More practical handbooks are available too (Chollet
2017; Raschka 2015).

2.5 Full architecture
The full architecture of the neural network used in this paper combines all of the components
introduced above: it is a residual neural network consisting of a stack of 9 convolutional layers
that are divided in three residual blocks. Each residual block ri, i ∈ 1, 2, 3, then, is composed of
three convolutional layers, hi, i ∈ 1, 2, 3. The layers in each block have 64 filters of size 8, 128 of
size 5 and 128 of size 3, respectively. They each perform the same three operations:

y = W ⊗ X + b (1)
s = BatchNorm(y)

h = ReLU(s)

where⊗ is the convolution operator in the first line, and the third line refers to the application of
theReLUactivation function covered above. The second line refers to a batch normalization layer
(Ioffe and Szegedy 2015): we will not cover this detail here, as it is a standard component of
modern neural networks. We shall briefly note that this layer applies a normalization operation
to the previous layer’s parameters, to reduce any dramatic covariance shifts in the parameters
during training, which increases the network’s overall numerical stability.

3

Figure 1: Schematic overview of the ResNet architecture. Each of the purple blocks represents
a single layer; the convolutional layers are organized in residual blocks of length three. The
numbers on the side of the boxes indicate the size of the filter bank in a convolutional layer.
The grey bended curves indicate the “skip connections”. After the convolutional part of the
network, plain averaging (cf. GAP) is applied across the activation of the final convolutional
layer to obtain a single output scalar for each instance. This number is finally bounded to the
[0, 1] range using the sigmoid function. The critical threshold for distinguishing the presence
or absence of selection is set to 0.5.

The output matrix of the last residual block is transformed into a single scalar by averag-
ing across the last layer’s activations. This is also known as a ‘Global Average Pooling’ layer
(‘GAP’). This number is finally bounded to a pseudo-probability in the [0, 1] range using the
sigmoid function. Throughout, the critical threshold for distinguishing the presence or absence
of selection adopted was 0.5.

The ResNet is implemented in Python using the Pytorch library (Paszke et al. 2019), and
can be found in the file src/nets.py under the class ResNet:

%run ../src/nets.py

To initialize a Residual Network for our time series classification task, we set the number of
input channels to 1, the number of filters of the first convolutional block to 64 (the remaining
two are automatically set by multiplying the first by 2), and the number of output classes to 1,
since we are dealing with a binary classification task:

model = ResNet(in_channels=1, mid_channels=64, num_pred_classes=1)

3 Generation of Training Data
3.1 Generating Time Series with the Wright-Fisher model
To effectively train the ResNet model, labeled training examples are required in order to op-
timize its weights (which are initialized randomly). To obtain this training material, we sim-
ulate artificial data using the Wright-Fisher model (Ewens 2012). In this section we describe
and show how the training data has been generated. Using the Wright-Fisher model as de-
scribed in Section 2.2.3 of the paper, we simulate time series representing frequency changes
over time. The model assumes a population of constant size N and discrete, non-overlapping

4

generations. Let z(ti) be the number of times some cultural variant A occurs in generation ti,
and let f (ti) be the relative frequency of that variant. Equation (4) in the paper, then, provides
the linear evolutionary pressure function used to generate the time series, which is repeated
here for convenience:

g(f (ti)) =
(1 + β) f (ti)

(1 + β) f (ti) + (1 − f (ti))
(4)

Here, β represents the bias towards selection of one of two variants of a cultural trait. The
Wright-Fishermodel is implemented in the Python function wright_fisher, which can be found
in the file src/simulation.py. It can be used to generate time series with a variable number
of generations (parameter T), different population sizes (parameter N), and varying selection
coefficients (parameter selection_strength).

% run ../src/simulation.py

For example, to generate a time series based on a population size of N = 1000 for T = 200
timesteps without any selection pressure (i.e. β = 0), we can use the following lines of code:

neutral_series = wright_fisher(N=1000, T=200, start=0.5, selection_strength=0)

Similarly, to generate a time serieswith a positive selection pressure, we canwrite the following:

biased_series = wright_fisher(N=1000, T=200, start=0.5, selection_strength=0.02)

Using Python’s plotting library Matplotlib (Hunter 2007), these series can be visualized as fol-
lows (cf. Figure 2):

import matplotlib.pyplot as plt
plt.style.use("bmh")

fig, ax = plt.subplots(figsize=(8, 5))

normalize the series before plotting
ax.plot(neutral_series / 1000, label="neutral ($\\beta=0$)")
ax.plot(biased_series / 1000, label="biased ($\\beta=0.02$)")

ax.set(xlabel="t", ylabel="$f(t_i)$", ylim=(0, 1.1))
plt.legend(loc="upper center", ncol=2, bbox_to_anchor=(0.5, 1.1), frameon=False)

Note that the wright_fisher function employs a random number generator, resulting in differ-
ent time series each time the cells above are executed. To illustrate this, consider the following
two graphs in Figure 3, inwhich 100 time serieswith β = 0 and 100with β = 0.02 are displayed.
The code to generate these graphs is given by:

fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(10, 4), sharey=True)

for i in range(100):
neutral_series = wright_fisher(N=1000, T=200, selection_strength=0) / 1000
ax1.plot(neutral_series, alpha=0.1, color="C0", lw=1)

biased_series = wright_fisher(N=1000, T=200, selection_strength=0.02) / 1000

5

0 25 50 75 100 125 150 175 200
t

0.0

0.2

0.4

0.6

0.8

1.0

f(
t i
)

neutral (β= 0) biased (β= 0.02)

Figure 2: Time series of frequency changes generated with the Wright-Fisher model.

ax2.plot(biased_series, alpha=0.1, color="C1", lw=1)

ax1.set(xlabel="t", ylabel="$f(t_i)$", ylim=(0, 1.1), title="$\\beta=0$")
ax2.set(xlabel="t", ylabel="$f(t_i)$", ylim=(0, 1.1), title="$\\beta=0.02$")

plt.tight_layout()

3.2 Data Distortion
In Section 2.2.4, the paper describes two data distortion strategies aimed at generating more
realistic training samples and approximating real-world data aberrations. The first strategy
is to distort the generated frequencies by augmenting them with an error term δ. For each
time step i = 1, 2, . . . , T, we sample δ from a normal distribution with zero mean and variance
σ = 0.2:

f (ti) = f (ti) + δi (2)
δi ∼ Normal(0, σ)

The augmented frequencies are subsequently truncated to the interval [0, 1]. To illustrate this
strategy, consider the code block below and the resulting plot in Figure 4 in which we use the
Distorter class (located in the file src/utils.py to alter the time series generated by the wright
fisher model:

6

0 25 50 75 100 125 150 175 200
t

0.0

0.2

0.4

0.6

0.8

1.0

f(
t i
)

β= 0

0 25 50 75 100 125 150 175 200
t

f(
t i
)

β= 0.02

Figure 3: Time series generatedwith theWright-Fishermodel. The left panel displays 100 series
generated with β = 0, and the right panel shows 100 time series with β = 0.02.

%run ../src/utils.py

disorter = Distorter(loc=0, sd=0.2)
series = wright_fisher(N=1000, T=200, selection_strength=0.02) / 1000
distorted_series = disorter.distort(series)

fig, ax = plt.subplots(figsize=(8, 5))

normalize the series before plotting
ax.plot(series, label="undistorted", lw=1, zorder=4)
ax.plot(distorted_series, label="distorted", lw=1)

ax.set(xlabel="t", ylabel="$f(t_i)$", ylim=(0, 1.1))
plt.legend(loc="upper center", ncol=2, bbox_to_anchor=(0.5, 1.1), frameon=False)

The second strategy aims to mimic real-world time series distortions by grouping the time
series into varying numbers of temporal segments (“bins”). Using this strategy, the generated
counts are grouped into a number of bins (in the range [4, T]), and subsequently transformed
into relative frequencies. A demo is given below of which the output is visualized in Figure 5:

series = wright_fisher(N=1000, T=200, selection_strength=0)
bins = 200, 50, 10, 4

fig, axes = plt.subplots(ncols=4, figsize=(10, 3), sharey=True)
axes = axes.flat

for i, n_bins in enumerate(bins):
f = apply_binning(series, n_bins, n_agents=1000)
axes[i].plot(f)
axes[i].set(xlabel="t", title=f"n bins = {n_bins}")
if i == 0:

7

0 25 50 75 100 125 150 175 200
t

0.0

0.2

0.4

0.6

0.8

1.0

f(
t i
)

undistorted distorted

Figure 4: Time series generated with the Wright-Fisher model after following the described
frequency distortion procedure.

axes[i].set_ylabel("$f(t_i)$")

plt.tight_layout()

3.3 Generating batches of training data
The TSC is trained for a number of epochs, and at each epoch, n time series are generated. To
efficiently train the neural classifier, we have to group these time series intomini-batches, which
allows Pytorch to utilize more efficient matrix operations. Mini-batches are created using the
class SimulationBatch located in the file src/dataset.py. This class conveniently wraps all time
series generation functionality described above.

When working on MacOS, uncomment the lines below, and run this unsafe cell
This is needed for the DataLoader class described below, which uses multi-
core processing for generating mini-batches

import multiprocessing as mp
mp.set_start_method("fork")

%run ../src/dataset.py

An instance of the batch sampler can be created as follows:

8

0 50 100 150 200
t

0.4

0.5

0.6

0.7

0.8
f(
t i
)

n bins = 200

0 20 40
t

n bins = 50

0 2 4 6 8
t

n bins = 10

0 1 2 3
t

n bins = 4

Figure 5: Time series after applying the binning strategy.

batch_sampler = SimulationBatch(
n_agents=1000, timesteps=200, n_sims=1000, varying_start_value=True,

)

The class definition specifies a number of arguments, of which we will explain the most im-
portant ones. First, n_agents and timesteps specify the population size andnumber of timesteps
respectively. Next, n_sims sets the number of samples generated in amini-batch. Finally, by set-
ting varying_start_value to True, each generated time series has a different starting frequency
at ti = 0, which is sampled from a uniform distribution f (ti) ∼ U (0.001, 0.999). When False,
all samples start from the same given starting value.

As described in the paper, the batch sampler simulates each time series in a mini-batch
using the wright_fisher function (see above) with a selection coefficient β in the range [0, 1]. In
each mini-batch, a 50-50 split of positive (β > 0) and negative instances (β = 0) is generated.
Positive selection coefficients are sampled from a log-uniform distribution (cf. Figure 6):

betas = loguniform(low=0.001, high=1, size=1000)

fig, ax = plt.subplots(figsize=(8, 5))
ax.hist(betas, bins="fd", density=True);
ax.set(xlabel="$\\beta$")

Subsequently, the generated time series are binned into a randomly sampled number of
temporal segments and the bin values are distorted as described above. To generate a batch
of time series, we call the sampler’s next() method, which returns a tuple of (i) the labels Y,
(ii) the sampled β values, (iii), the sampled number of bins for each time series, and (iv) the
generated time series:

labels, beta, bins, series = batch_sampler.next()

The following lines confirm that the sampler made an equal split of positive and negative ex-
amples:

n_neutral, n_biased = (labels == 0).sum(), (labels == 1).sum()

print(f"number of neutral examples (beta = 0) : {n_neutral}")
print(f"number of biased examples (beta > 0): {n_biased}")

9

0.0 0.2 0.4 0.6 0.8 1.0
β

0

2

4

6

8

10

12

14

16

Figure 6: Distribution of β values sampled from the log-uniform distribution.

number of neutral examples (beta = 0) : 500
number of biased examples (beta > 0): 500

Similarly, the plots in Figure 7 show the distributions of the sampled values for β and number
of bins:

fig, (ax_beta, ax_bins) = plt.subplots(ncols=2, figsize=(10, 4))

ax_beta.hist(beta.numpy(), bins="fd", density=True);
ax_beta.set(xlabel="sampled $\\beta$ value")

ax_bins.hist(bins.numpy(), bins="fd", density=True);
ax_bins.set(xlabel="sampled number of bins")

plt.tight_layout()

Finally, series as defined above contains amatrix of time series. To ensure that after varying
the number of temporal segments, all time series in a mini-batch have the same length, zero-
padding is applied to these series. This involves extending the series with zeros, as required by
Pytorch:

tensor([[0.4450, 0.4505, 0.4860, ..., 0.0000, 0.0000, 0.0000],
[0.5849, 0.5410, 0.5686, ..., 0.0000, 0.0000, 0.0000],
[0.5906, 0.6934, 0.7471, ..., 0.0000, 0.0000, 0.0000],
...,
[0.4240, 0.4315, 0.4120, ..., 0.0000, 0.0000, 0.0000],

10

0.0 0.2 0.4 0.6 0.8 1.0
sampled β value

0

20

40

60

80

0 25 50 75 100 125 150 175 200
sampled number of bins

0.000

0.001

0.002

0.003

0.004

0.005

0.006

Figure 7: Distributions of sampled β values and number of temporal segments.

[0.8958, 0.9991, 1.0000, ..., 0.0000, 0.0000, 0.0000],
[0.6665, 0.8210, 0.9215, ..., 0.0000, 0.0000, 0.0000]])

print("Number of time series: {}, number of time steps: {}.".format(
*series.size()))

Number of time series: 1000, number of time steps: 200.

4 Training Procedure
In this section, we will describe the training procedure outlined in the paper in more detail.
To gain a more intuitive and conceptual understanding of the procedure, we supplement this
description with lines of Python code to illustrate how the TSC can be trained.

4.1 A demonstration of the training procedure
The neural architecture of the TSC requires a large number of training examples to accurately
and robustly discriminate between biased and unbiased series of frequency changes. To more
efficiently generate a large number of mini-batches, the SimulationBatch class is wrapped in the
class DataLoader (located in the file src/datsets.py), which enables generating mini-batches
in parallel. The class requires a configuration dictionary which specifies the arguments for
the SimulationBatch instances, as well as a batch size (batch_size) and number of simulations
for each epoch (n_sims). Below we initialize a DataLoader instance, which will generate 1000
samples split into 1000 / 100 = 10 mini-batches:

config = {
"n_agents": 1000,
"timesteps": 200,
"varying_start_value": True,
"variable_binning": False, # unused

11

"start": 0.5, # unused if variable_start_value = True
"compute_fiv": False # unused

}

data_loader = DataLoader(config, batch_size=100, n_sims=1000)

The cell below provides all necessary code to train the model. The model (see the variable
model above) is trained for 10 consecutive epochs. In each epoch, the DataLoader generates a
new set of time series. This set is fed to the ResNet model, and we aim to optimize its weights
using the established Adam optimizer (Kingma and Ba 2015) with a small learning rate of
0.001. The loss function used is the binary cross-entropy loss (between y and ŷ), which we aim
to minimize:

ℓ(X, Y) = L =
1
N

N

∑
i=1

yi · log(p(yi)) + (1 − yi) · log(1 − p(yi)) (3)

Here yi is the binary label (1 or 0) for a particular time series, xi, p(yi) the probability that xi is
generated with a non-zero selection coefficient, and N is the batch size.

import tqdm
import numpy as np
import torch
import torch.nn.functional as F

from torch.optim import Adam

learning_rate = 1e-3
n_epochs = 10
optimizer = Adam(model.parameters(), lr=learning_rate)
model.train() # turn on training regime to allow parameter updates

train_loss = []
for epoch in tqdm.trange(n_epochs):

epoch_loss = []
for labels, _, _, series in data_loader:

series = series.unsqueeze(1)
labels = labels.unsqueeze(-1).float()
Set gradients to zero
optimizer.zero_grad()
outputs = model(series)
Compute the loss for this mini-batch
loss = F.binary_cross_entropy_with_logits(outputs, labels)
epoch_loss.append(loss.item())
Compute the gradient of loss for the model's parameters
loss.backward()
Update the parameters Adam is supposed to update
optimizer.step()

train_loss.append(np.mean(epoch_loss))

12

2 4 6 8 10
Epoch

0.40

0.42

0.44

0.46

0.48

0.50

0.52

Lo
ss

100\%|██████████| 10/10 [02:06<00:00, 12.63s/it]

Training the network for 10 epochs takes approximately 2minutes on a 2,6 GHz 6-Core Intel
Core i7 machine. The plot below visualizes how the loss progresses over time. It is assuring
to observe that the loss is monotonically declining, even though the network is presented with
new, unseen time series at each epoch. The declining loss indicates that the system is effectively
learning how to discriminate between biased and unbiased samples better at each epoch:

fig, ax = plt.subplots(figsize=(8, 5))
ax.plot(np.arange(1, 11), train_loss)
ax.set(xlabel="Epoch", ylabel="Loss")

Note that the loss is still decreasing after 10 epochs and has not reached a plateau. Thus,
with more epochs of training, the performance of the model could be improved (see below for
a description of how the model described in the paper was trained). However, 10 epochs is
enough for this demonstration of the model. Once the model is trained, we can use it to classify
new, unseen time series as either “biased” or “unbiased” (i.e., “neutral”). For this classification
we use the Sigmoid function, which returns the pseudo-probability p of a time series being
biased. If p > 0.5, it is classified as biased, and unbiased otherwise (see the ‘predict’ function
below).

def predict(series):
"""Helper function to make predictions about time series."""
model.eval() # Make sure no gradient updates take place
with torch.no_grad():

output = model(torch.FloatTensor([series]).unsqueeze(1))
prob = torch.sigmoid(output).squeeze(1)[0]

13

0 25 50 75 100 125 150 175 200
t

0.4

0.5

0.6

0.7

0.8

0.9

1.0
f(
t i
)

Time series is `neutral` with a probability of 0.80

0 25 50 75 100 125 150 175 200
t

f(
t i
)

Time series is `biased` with a probability of 0.95

Figure 8: Time series and corresponding predictions of the TSC. The left panel shows a neutral
time series (i.e. β = 0), and the right panel displays a series with biased frequency changes
(i.e. β = 0.02). The titles of the two plot show the predictions of the classifier.

pred = "biased" if prob > 0.5 else "neutral"
if pred == "neutral":

prob = 1 - prob
return prob, pred

In the cell below, we test the model on two simulated time series. The first is a neutral
time series (β = 0) and the second is generated with a low, but positive selection pressure
(β = 0.02). Although the model has only been trained for a small number of epochs and on
relatively few examples, it is already quite capable of correctly classifying the time series (cf.
Figure 8):

neutral_series = wright_fisher(1000, 200, 0.0) / 1000
biased_series = wright_fisher(1000, 200, 0.02) / 1000

fig, (ax1, ax2) = plt.subplots(ncols=2, figsize=(10, 4), sharey=True)
ax1.plot(neutral_series)
ax1.set(xlabel="t", ylabel="$f(t_i)$")

prob, pred = predict(neutral_series)
ax1.set_title(f"Time series is `{pred}` with a probability of {prob:.2f}", fontsize=9);

ax2.plot(biased_series)
ax2.set(xlabel="t", ylabel="$f(t_i)$")

prob, pred = predict(biased_series)
ax2.set_title(f"Time series is `{pred}` with a probability of {prob:.2f}", fontsize=9);

plt.tight_layout()

14

4.2 Overview of the parameters used
In the demonstration above, we trained the TSC for 10 epochs. For better results, however, we
should monitor the network’s performance after each epoch on a held-out development set,
and halt the training procedure after no improvement in the loss on the development data has
been observed for five, consecutive epochs. The results described in the paper were obtained
based on the following parameter settings:

1. We generated 50,000 time series per epoch, which are split into 100 mini-batches (the
batch size is therefore 500).

2. The learning rate of the Adam optimizer was set to a low value of 6-e5 to prevent overfit-
ting (although the exact value did not have much influence on the outcomes as long as it
was less than 0.001).

3. The ResNet consists of three convolutional blocks that have 64 filters of size 8, 128 of size
5 and 128 of size 3.

It should be noted that the specific configuration generally only has a limited impact on
the performance of the model, and that other neural architectures can yielded competitive per-
formance (see the different models in src/nets.py). The most important point of the paper is
that a machine learning approach, where the chosen classifier and architecture is of secondary
importance, can achieve competitive performance, and possibly outperform other tests on real-
world, messy data, that undermine particular assumptions of statistical tests.

References
Chollet, F. (2017). Deep learning with python (1st). USA, Manning Publications Co.
Ewens,W. J. (2012).Mathematical population genetics 1: Theoretical introduction (Vol. 27). Springer

Science & Business Media.
Fawaz, H. I., Forestier, G., Weber, J., Idoumghar, L., & Muller, P.-A. (2019). Deep learning for

time series classification: A review.DataMining and Knowledge Discovery, 33(4), 917–963.
Goodfellow, I., Bengio, Y., &Courville, A. (2016).Deep learning [http://www.deeplearningbook.

org]. MIT Press.
He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition, In

2016 IEEE conference on computer vision and pattern recognition, CVPR 2016, las vegas, nv,
usa, june 27-30, 2016, IEEE Computer Society.

Hunter, J. D. (2007).Matplotlib: A 2d graphics environment.Computing in Science&Engineering,
9(3), 90–95.

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network training by re-
ducing internal covariate shift (F. Bach &D. Blei, Eds.). In F. Bach &D. Blei (Eds.), Lille,
France, PMLR.

Kingma, D. P., & Ba, J. L. (2015). Adam: A method for stochastic optimization, In International
conference on learning representations.

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to doc-
ument recognition, In Proceedings of the ieee.

Paszke,A., Gross, S.,Massa, F., Lerer,A., Bradbury, J., Chanan,G., Killeen, T., Lin, Z., Gimelshein,
N., Antiga, L., Desmaison, A., Kopf, A., Yang, E., DeVito, Z., Raison, M., Tejani, A., Chil-
amkurthy, S., Steiner, B., Fang, L., … Chintala, S. (2019). Pytorch: An imperative style,
high-performance deep learning library (H. Wallach, H. Larochelle, A. Beygelzimer, F.
d’Alché-Buc, E. Fox, & R. Garnett, Eds.). In H.Wallach, H. Larochelle, A. Beygelzimer, F.

15

http://www.deeplearningbook.org
http://www.deeplearningbook.org

d’Alché-Buc, E. Fox, & R. Garnett (Eds.),Advances in neural information processing systems
32. Curran Associates, Inc.

Raschka, S. (2015). Python machine learning. Packt Publishing.
Wang, Z., Yan, W., & Oates, T. (2016). Time series classification from scratch with deep neural

networks: A strong baseline. arXiv preprint arXiv:1611.06455.

16

	Introduction
	A Machine Learning Approach to Time Series Classification
	Neural networks
	The Multi-Layer Perceptron
	Skip connections
	Convolutions
	Full architecture

	Generation of Training Data
	Generating Time Series with the Wright-Fisher model
	Data Distortion
	Generating batches of training data

	Training Procedure
	A demonstration of the training procedure
	Overview of the parameters used

