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Supplementary Information for ‘Cultural Group Selection and Human 
Cooperation: A Conceptual and Empirical Review’ by Daniel Smith 
 
S1: The Mathematical Equivalence of Kin Selection and Multi-Level Selection 

In this section I present a simple model of altruism which can be understood from both kin selection 
and multi-level selection (MLS) perspectives. The model assumes asexual haploid individuals with a 
single locus which codes either for altruism or selfishness. Pairs of individuals engage in a single 
interaction per generation. Altruists help others (b) at a cost to self (c) in a Prisoner’s Dilemma 
scenario. If two altruists meet they both receive ‘b-c’; if two selfish types meet they both receive 
nothing; a selfish type meeting an altruist receives ‘b’, while an altruist meeting a selfish type 
receives ‘-c’. Parent-offspring heritability is assumed to be perfect.  

We begin with the Price equation, which is a fully general method for modelling evolutionary change 
from one generation to the next (Frank, 1997; Okasha, 2006; Price, 1972) 

 �̅�∆𝑧̅ = 𝑐𝑜𝑣(𝑤𝑖, 𝑧𝑖) + 𝐸(𝑤𝑖∆𝑧𝑖),                                                                                      (S1-1) 

where ‘z’ is the behavioural trait (𝑧𝑖=1 for altruists and 0 for selfish types), ‘w’ is individual fitness 
and the subscript ‘i’ denotes the ith individual in the population. Without going into the details of 
deriving equation S1-1 (see Frank, 1997; Gardner, West, & Wild, 2011; McElreath & Boyd, 2007; 
Okasha, 2006), this equation says that the average change in the trait from one generation to the 
next (the ‘∆𝑧̅’ term on the left-hand side of the equation) is a combination of both the covariance 
between the trait and fitness (the ‘selection’ component) and the expected (average) fitness-
weighted change in the trait from one generation to the next due to non-selective factors (the 
‘transmission’ component). In genetic evolution, the transmission component is often dropped as it 
is assumed to be 0 (i.e., meiosis is fair and mutation is unbiased). The ‘�̅�’ term on the left-hand side 
of equation S1-1 is the average fitness in the population and does not impact the interpretation of 
the direction of selection (and if we normalise average fitness to ‘1’ this term disappears).  

From this equation we can specify the fitness term ‘𝑤𝑖’ as a regression equation 

 𝑤𝑖 =  𝑎 + 𝑏𝑧𝑝 − 𝑐𝑧𝑖 + 𝑒𝑖,                                                                                                             (S1-2) 

where ‘𝑎′ is the intercept term for baseline fitness prior to interaction, ‘𝑏𝑧𝑝’ is the benefit given to 

others depending on whether their partner is an altruist or not (the partner’s phenotype is given by 
‘𝑧𝑝’), ‘𝑐𝑧𝑖’ is the cost to self when possessing the altruistic trait, and ‘𝑒𝑖’ denotes the residuals. 

Substituting equation S1-2 into equation S1-1 and dropping the transmission term, we get 

 �̅�∆𝑧̅ = 𝑐𝑜𝑣(𝑎, 𝑧𝑖) + 𝑐𝑜𝑣(𝑏𝑧𝑝, 𝑧𝑖) −  𝑐𝑜𝑣(𝑐𝑧𝑖 , 𝑧𝑖) +  𝑐𝑜𝑣(𝑒𝑖, 𝑧𝑖).                                          (S1-3) 

The intercept (baseline fitness) is assumed to be the same for both altruists and selfish types, so its 
covariance is 0. Similarly, we assume the residuals do not covary with the trait, so 𝑐𝑜𝑣(𝑒𝑖, 𝑧𝑖)=0. 
Assuming ‘b’ and ‘c’ are constants (as we do in this model), with a bit of algebraic jiggery-pokery this 
becomes 

 �̅�∆𝑧̅ = 𝑏 ∗ 𝑐𝑜𝑣(𝑧𝑝, 𝑧𝑖) − 𝑐 ∗ 𝑐𝑜𝑣(𝑧𝑖, 𝑧𝑖) 

           = 𝑏 ∗ 𝑣𝑎𝑟(𝑧𝑖) ∗ 𝛽(𝑧𝑝, 𝑧𝑖) − 𝑐 ∗ 𝑣𝑎𝑟(𝑧𝑖) 

           = 𝑣𝑎𝑟(𝑧𝑖)(𝑏𝛽(𝑧𝑝, 𝑧𝑖) − 𝑐).                                                                                                 (S1-4) 

We can interpret the regression coefficient ‘𝛽(𝑧𝑝, 𝑧𝑖)’ as the coefficient of relatedness between 

partners (‘r’), which is positive if, on average, interactants possess the same trait (i.e., altruists assort 
with other altruists). Assuming that variance is not 0 (by definition, variance cannot be negative), 
equation S1-4 simplifies to Hamilton’s rule, where 

 ∆𝑧̅ > 0 𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓 𝑟𝑏 − 𝑐 > 0 ⇔  𝑟𝐵 − 𝐶 > 0                                                               (S1-5) 
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It is important to note that in this example the costs (c) and benefits (b) to being altruistic in terms of 
game-theoretic pay-offs are equivalent to the direct fitness costs (C) and indirect fitness benefits (B) 
in Hamilton’s rule. Other than in the simplest cases (like here) this will not hold. As such, it is 
important not to conflate the costs and benefits in pay-off matrices with direct and indirect fitness 
terms in Hamilton’s rule (Gardner et al., 2011). For instance, in the first example in figure 2 in the 
main text cooperators pay a cost of 1, yet benefit from their own cooperation, so the direct fitness 
cost is negative (i.e., C = c - (b/2) = 1 - (3/2) = -0.5; -C is therefore positive, as - -0.5 = +0.5). A 
comparable approach to that presented above, but employing partial regression coefficients to 
calculate the ‘B’ and ‘C’ terms (a so-called ‘generalised Hamilton’s rule’), can be used to analyse such 
cases, including instances involving non-additive pay-offs, in terms of Hamilton’s rule (Birch, 2014; 
Gardner et al., 2011; Marshall, 2015). However, the application of this regression-based approach is 
not without its critics, who argue that the regression approach can lead to model misspecification if 
fitness functions are non-linear (i.e., pay-offs are non-additive), as it applies a set of linear models to 
what may be a non-linear system (van Veelen, 2018; van Veelen, Allen, Hoffman, Simon, & Veller, 
2017). It has also been argued that the regression method cannot make predictions, is unfalsifiable, 
and, in certain systems, can misclassify behaviours as ‘cooperative’ or ‘costly’ when they are not 
(Allen, Nowak, & Wilson, 2013; Nowak, McAvoy, Allen, & Wilson, 2017). This is not the place (and I 
am not the person) to adjudicate these technical debates, but for accessible and balanced reviews 
on this topic, see Birch (2017a; 2017b) and Okasha (2016). Regardless of these on-going debates, 
simple additive models – such as those presented above and in figure 2 in the main text – are a 
useful place to start for understanding these issues and how this kin selection perspective can be 
reformulated to a multi-level specification, to which we turn next. 

Beginning with equation S1-1 we can also derive a multi-level selection equation for evolutionary 
change. Rather than take the global covariance between the trait and fitness for all individuals 
within the population, if the population is structed into groups we can decompose equation S1-1 
into the covariance between group fitness – defined as the average fitness within said group – and 
the average trait in the group (denoted by capital letters with the subscript k) plus the average 
covariance between fitness and the trait within groups (denoted by lower-case letters with the 
subscript jk, meaning the jth individual in group k). Again assuming that the transmission term is 
zero, in this multi-level specification equation S1-1 now becomes 

 �̅�∆𝑧̅ = 𝑐𝑜𝑣(𝑤𝑖, 𝑧𝑖)  ⇔  𝑐𝑜𝑣(𝑊𝑘 , 𝑍𝑘) + 𝐸(𝑐𝑜𝑣(𝑤𝑗𝑘 , 𝑧𝑗𝑘)).                                                     (S1-6) 

This is now a multi-level formulation of evolutionary change, where the first covariance term 
signifies the increased group-level fitness of groups with more altruists, while the second term is the 
average within-group covariance between within-group fitness and whether the individual is an 
altruist or not. These terms can be interpreted as reflecting the respective strengths of between-
group selection and within-group selection (Sober & Wilson, 1998), although this interpretation has 
been contested (Okasha, 2006). Equation S1-6 can be made more intuitive by re-writing the 
covariance terms as variances and regression coefficients 

 �̅�∆𝑧̅ = 𝑣𝑎𝑟(𝑍𝑘)𝛽(𝑊𝑘 , 𝑍𝑘) +  𝐸(𝑣𝑎𝑟(𝑧𝑗𝑘)𝛽(𝑤𝑗𝑘 , 𝑧𝑗𝑘)).                                                         (S1-7) 

Thus, if the between-group regression coefficient is positive then altruists increase group fitness, 
while if the average within-group term is negative then altruists are selected against within groups. 
The relative magnitude of these regression coefficients and the levels of variation within and 
between groups will determine whether altruism spreads in the population or not. Given the 
assumptions of the model above, the between-group regression term will equal ‘b-c’, as this is the 
change in group fitness from a group with no altruists to a group with only altruists. The within-
group regression term will equal ‘-(b+c)’, as in mixed groups this is the relative loss in fitness for 
altruists compared to selfish types. Equation S1-7 then becomes  

 �̅�∆𝑧̅ = 𝑣𝑎𝑟(𝑍𝑘)(𝑏 − 𝑐) −  𝐸(𝑣𝑎𝑟(𝑧𝑗𝑘)(𝑏 + 𝑐)).                                                                     (S1-8) 
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This means that an altruistic trait which lowers within-group fitness can only evolve if it is 
outweighed by group-level selection. Therefore, with the Price equation as a starting point, both the 
kin selection and multi-level selection approaches can be seen as formally equivalent. Even though 
their end-points seem rather different, if constructed correctly both approaches lead to the same 
conclusions regarding the direction and magnitude of evolutionary change. This means that models 
of group selection can be rewritten into kin selection models, and vice versa (Marshall, 2011). For a 
more complex worked example, see the group selection model of Traulsen & Nowak (2006) which 
was rederived in terms of kin selection by Lehmann, Keller, West, & Roze (2007). 

As a simple example of this equivalence between kin selection and MLS approaches, the 'scale of 
competition' influences cooperation between non-relatives and can be understood from both 
perspectives (West et al., 2006). If competition is 'local' (i.e., within groups), then lower levels of 
cooperation are expected. This can be understood from a kin selection perspective as cooperating 
with group-mates decreases one's direct fitness relative to non-cooperators in the group. Similarly, 
from an MLS perspective, if competition is local then there is no between-group selection, only 
within-group selection, so cooperation is not favoured as cooperators have lower fitness than 
defectors within groups. However, when competition is 'global' (i.e., between groups), from a kin 
selection view the costs to cooperating are lower, as cooperating with group-mates does not 
decrease one's relative fitness within-groups, but rather increases one’s direct fitness when 
competing with other groups (as direct fitness now depends on group success). Alternatively, from 
an MLS perspective, global competition increases the level of between-group selection, thus 
favouring cooperative behaviour (as cooperative groups outcompete less-cooperative groups). 
Accordingly, experimental studies have shown that cooperation is greater when competition is 
between, rather than within, groups (Puurtinen & Mappes, 2009; West et al., 2006), while real-world 
studies suggest that conflict may promote cooperation, both in humans (Bauer, Blattman, Henrich, 
Miguel, & Mitts, 2016; although see Silva & Mace, 2015) and non-humans (e.g., green 
woodhoopoes: Radford, 2008).  

A few further caveats are worth mentioning here. First, the MLS perspective requires bounded 
groups, where interactions only occur within these groups. Fluid or unbounded groups are an issue 
for the MLS framework as fitness cannot be attributed to groups (although a ‘continuous trait-group’ 
model involving overlapping groups can be formulated; Wilson, 1975). In contrast, a fluid population 
structure poses no problem for kin selection models (Birch, 2017b). Second, although the two 
approaches are mathematically equivalent (at least in simple additive models), it does not follow 
that they are causally equivalent. While both provide the ‘correct’ outcome of terms of overall 
evolutionary change, and in many cases both approaches are interchangeable, in some instances 
one approach provides the correct causal explanation while the other does not (Birch, 2019; Krupp, 
2016; Okasha, 2016b). Third, although both approaches equivalently predict evolutionary change, 
they have different definitions of what qualifies as ‘altruism’ (see section 2 and figure 2 of the main 
text). Fourth, although the MLS perspective seemingly decomposes fitness into within-group and 
between-group selection, if groups of individually-fitter individuals cluster together, and fitness is 
determined by non-social factors, then this approach may erroneously detect that group selection is 
acting. This is despite group-level fitness effects being solely driven by individual-level differences in 
fitness that have nothing to do with the group (this is an example of causal non-equivalence, 
mentioned above). The canonical case of such ‘fortuitous group benefits’ is George Williams’ (1966) 
deer example: A herd of fleet deer (an individual-level explanation) is not the same as a fleet herd of 
deer (a group-level explanation). As such, the multi-level Price equation may confuse a fleet deer for 
a fleet herd (for additional discussion of the alternative ‘contextual analysis’ approach to multi-level 
systems which may overcome some of these potential issues, see Okasha, 2006).  

Finally, as mentioned above and in the main text, there is currently debate over the application of 
this regression-based approach to deriving Hamilton’s rule when fitness pay-offs are non-additive 
(e.g., van Veelen et al., 2017), and therefore whether kin selection and MLS are in fact 
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mathematically equivalent under these circumstances (de Vladar & Szathmáry, 2017). Although all 
parties agree that kin selection and MLS are equivalent when fitness pay-offs are additive, critics of 
the equivalence thesis claim that under conditions of non-additivity Hamilton’s rule is not uniquely 
defined, meaning that either the form of Hamilton’s rule changes depending on the fitness pay-offs 
or population structure (van Veelen, 2011; van Veelen, García, Sabelis, & Egas, 2012; van Veelen, 
Luo, & Simon, 2014), or that use of the regression method opens the door to model misspecification 
if relationships are assumed to be linear when in fact they are non-linear (van Veelen et al., 2017). 
Additionally, although inclusive fitness is claimed to be the quantity that individuals are expected to 
maximise (Grafen, 2006), and therefore that natural selection will have designed organisms to act as 
if they possess the goal of maximising their inclusive fitness (West & Gardner, 2013), this conclusion 
only holds for additive models (Allen & Nowak, 2016; Nowak, Tarnita, & Wilson, 2010). In additive 
cases where the costs and benefits are under the actor’s control and do not depend on population 
structure (i.e., regardless of the frequency of altruists in the population, if an individual acts 
altruistically they increase their recipient’s fitness by a fixed amount ‘B’, while decrease their own 
direct fitness by a fixed amount ‘C’), then organisms are expected to behave as if maximising their 
inclusive fitness. However, in non-additive situations the costs and benefits are not totally under the 
actor’s control as these terms depend on the identity of their partner and the wider population 
structure (i.e., the benefit to others by acting altruistically (B) and the direct fitness cost to self (C) 
will vary depending on whether one’s partner is an altruist or not, as well as the frequency of 
altruists in the population). In these circumstances, although Hamilton’s rule will still be satisfied and 
a trait will be favoured via natural selection if rB – C > 0, organisms are not necessarily expected to 
act as if they are maximising their inclusive fitness as the direct and indirect fitness effects are, to 
some extent, beyond the actor’s control (Birch, 2017a; Okasha, 2016a). 

In response to these criticisms, proponents of kin selection and the equivalence thesis claim that the 
regression-based approach always correctly predicts the direction of selection, even in non-additive 
models, in both kin selection and MLS formulations, and therefore that both approaches are 
equivalent (Birch, 2014; Gardner et al., 2011; Marshall, 2015). This debate is far from settled, but to 
some extent this disagreement stems from different conceptions of Hamilton’s rule and multiple 
definitions of the ‘cost’ and ‘benefit’ terms (Birch, 2014; Birch & Okasha, 2015; van Veelen et al., 
2017). Additionally, given a potentially theoretically-reasonable assumption of ‘weak selection’ 
(where differences in fitness between altruists and non-altruists are small) non-additive models 
approximate additive models, removing some of the limitations associated with non-additivity, 
which also means that organisms may act as if maximising their inclusive fitness under these 
circumstances (Birch, 2017a; Okasha, 2016a). Furthermore, from a practical perspective for 
empiricists, the assumption that organisms possess the goal of maximizing their inclusive fitness can 
be a useful stance to take as it provides a ‘design principle’ from which to understand and interpret 
social behaviours without needing to know the underlying genetics of the population (Levin & 
Grafen, 2019; West & Gardner, 2013). Providing a detailed summary of these complex issues – let 
alone a resolution to them – is far beyond the scope of this paper, but it is hoped that this brief 
discussion provides an introductory sketch of these issues. 
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S2: Models of Cultural Multi-level Selection and Cultural Kin Selection 

Genetic multi-level selection (equation S1-7 from section S1 above) can be adapted to represent 
multi-level cultural evolution (Henrich, 2004a): 

 𝑤𝑐̅̅̅̅ ∆𝑧�̅� = 𝑣𝑎𝑟(𝑍𝑐𝑘)𝛽(𝑊𝑐𝑘 , 𝑍𝑐𝑘) +  𝐸(𝑣𝑎𝑟(𝑧𝑐𝑗𝑘)𝛽(𝑤𝑐𝑗𝑘 , 𝑧𝑐𝑗𝑘)).                                        (S2-1)  

The additional ‘c’ letters indicate that equation S2-1 now denotes cultural fitness and cultural traits. 
Equation S2-1 states that the average change in a cultural trait from one cultural generation to the 
next (‘∆𝑧�̅�’) is determined by: i) the group-level variation in the cultural trait multiplied by the slope 
between group cultural fitness and the average group trait (the between-group selection term); and 
ii) the average within-group variation in the cultural trait of each group multiplied by the slope 
between individual cultural fitness and possessing the cultural trait within each group (the within-
group selection term).  

CGS models make the evolution of group-beneficial behaviours more likely by either: i) increasing 
the slope of the between-group selection term, such as via group competition; ii) reducing the slope 
of the within-group selection term, causing the within-group slope to approach, equal or be greater 
than zero (meaning that within-group selection against cooperators is reduced or completely 
negated), such as via reciprocity, reputation, reward, punishment and other levelling mechanisms; 
iii) decreasing within-group variation and increasing between-group variation, by various social 
learning biases or by punishing non-normative behaviour; or iv) any combination of the above.  

Given the equivalence between MLS and kin selection (uncontroversially in additive models, at 
least), equation S2-1 can be re-written as a form of cultural Hamilton’s rule (Allison, 1992; Birch, 
2017b; El Mouden, André, Morin, & Nettle, 2014), where the cultural trait can increase in frequency 
in the population when 

 𝑟𝑐𝐵𝑐 − 𝐶𝑐 > 0.                                                                                                                                 (S2-2) 

The subscript ‘c’ denotes that equation S2-2 refers to cultural evolution, so Bc is the increase in 
recipient’s cultural fitness, Cc is the direct cost to an individual’s cultural fitness by performing said 
behaviour, and rc is the cultural relatedness between the focal individual and partner(s). Cultural 
relatedness is the likelihood that interactants share the same culturally-inherited trait, beyond 
background levels of the trait in the population. As with genetic Hamilton’s rule, a culturally costly 
behaviour can evolve if the cultural relatedness between interactants is high enough. For instance, 
an individual might relinquish some direct cultural fitness (Cc is positive), if it increases their indirect 
cultural fitness through others who share the same cultural trait (rcBc > Cc). Mechanisms of social 
learning, such as conformism and prestige bias, can cause cultural relatedness to be greater than 
genetic relatedness, while mechanisms such as punishment will reduce the direct benefit to acting 
selfishly. Although CGS is often not conceptualised in terms of a cultural Hamilton’s rule, equations 
S2-1 and S2-2 are equivalent, meaning that cultural change can either be formulated as either a 
group-level process (equation S2-1) or an individual-level process (equation S2-2).  

Note that these formulations are not measuring the impact of the cultural trait on biological fitness, 
but rather the impact of the cultural trait on cultural fitness, where cultural fitness is the amount of 
cultural influence that an individual or group has (El Mouden et al., 2014; Ramsey & De Block, 2017). 
Individuals (or groups) who spawn many cultural offspring have high cultural fitness (e.g., prestigious 
individuals or groups), while individuals (or groups) who have limited cultural influence have low 
cultural fitness (e.g., asocial individuals or groups with less-attractive cultural traits). This point is 
returned to in the main text (section 8). Note also that for simplicity equations S2-1 and S2-2 assume 
that transmission is unbiased, hence why the ‘transmission’ term (see Equation S1-1) has been 
omitted. Given that our evolved psychology and other sources of cultural learning are likely to bias 
culturally-inherited traits in certain directions, the transmission term for cultural evolution is likely to 
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be substantial compared to genetic evolution, but this additional complexity is ignored here (for 
additional discussion on this, see El Mouden et al., 2014).  
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