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S1. Knot Invariants

Knot invariants will give the same result when two knots are the same, and
different results when they are distinct. The Jones polynomial Jones (1985), de-
noted V (t), is one such invariant, which assigns a Laurent polynomial with integer
coefficients in one variable t1/2 to each knot and gives us some information about
the crossings of that knot. The Jones polynomial is given for the left-handed
granny knot in Equation S1, the right-handed granny knot in Equation S2 and
both reef knots by Equation S3. We can see that the Jones polynomial for the
left-handed granny knot differs from the right-handed granny knot by the sign of
the exponents in the polynomial, the exponents for the left-handed granny knot
are all negative whilst they are positive for the right-handed granny knot. This is
the only difference between the two polynomials and shows that the left-handed
and right-handed granny knot are mirror images of one another. Both versions of
the reef knot have the same Jones polynomial which contains both positive and
negative values for the exponents showing that there is no difference between the
two versions of this knot. These polynomials show that the granny knots are dis-
tinct from each other and both reef knots, but the two reef knots are not distinct,
which can be seen by rotating one reef knot to match the other; no such rotation
is possible for the granny knots (See Figure 1c).

(S1) VLL(t) = t−2 + 2t−4 − 2t−5 + t−6 − 2t−7 + t−8

(S2) VRR(t) = t2 + 2t4 − 2t5 + t6 − 2t7 + t8

(S3) Vreef (t) = −t3 + t2 − t+ 3− t−1 + t−2 − t−3
1
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S2. Asocial Handedness Bias Experiment

We asked participants to tie a “simple knot”. We then checked that this was a
trefoil knot. The knot was undone, then participants were asked to tie a “simple
knot” every 60s over a 10 minute period. Each knot was tied in a separate 25cm
length of string and the sealed in a small plastic bag. Over the same period,
participants were asked to complete a distraction task in between tying each knot,
requiring them to draw six concepts in order that another person could match the
concepts to the drawings at a later time. Both the plastic bag containing the 10
knots and the paper with the drawings from the distraction task were collected in
at the end of this stage.

For each participant, we recorded knot handedness over the 10 trefoils as an esti-
mate of knot handedness bias in the absence of a demonstration. The frequency of
right-handed trefoils tied by each person is shown in Figure S1, where participants
who tied no right-handed trefoils tied all left-handed trefoils. Two participants
tied knots that were not trefoils and have not been included in these data.
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Figure S1. Frequency of right-handed trefoils tied by participants, those
who tied no right-handed tied all left-handed trefoils and vice versa

The majority of participants tied either all right-handed or all left-handed tre-
foils, with a few tying a mixture of the two. Left-handed trefoils were much more
common than right-handed trefoils. The mean proportion of right-handed trefoils
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tied per person was 0.32. This asocial handedness bias is compared against the
handedness bias estimate derived from the social transmission experiment. See
Section S4) for weak evidence that individuals who typically write with their right
hand were more likely to tie a left-handed trefoil than those who write with their
left, while those using their left hand to write were more likely to tie a right-handed
trefoil than those who use their right. This weak evidence agrees with Chisnall
(2010) who, through a survey involving the tying of multiple knots including tre-
foil knots and shoelace knots, found right handers tied a higher proportion of left
handed knots than left handers and visa versa.

We note some association between the asocial handedness bias and the first knot
tied by participants in the social transmission experiment (Table S1).

Social trans. expt. knots tied
LL RR LR RL Total

Asocial handedness bias
Left 25 20 12 11 68

Right 6 9 2 12 29
Total 31 29 14 23 97

Table S1. Knot frequencies in the social transmission experiment given
handedness of trefoil previously tied by the same participants under aso-
cial conditions; dashed lines delineate granny knots from reef knots.

S3. Questionnaire Information

Participants were asked to complete a questionnaire detailing their name, gen-
der, degree programme, handedness and hand usually written with and whether
they knew how to tie a reef or granny knot. The questionnaire was filled in by
participants at the end of the experiment, when all materials had been collected.

Trefoil Tied
Right Left Total

Hand usually written with
Right 25 62 87
Left 4 6 10

Self-reported handedness
Right 23 58 81
Left 4 5 9

Ambidextrous 2 5 7
Total 29 68 97

Table S2. Handedness of trefoils tied given hand usually written with.
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The majority of participants usually wrote with their right hand and tied a ma-
jority of left-handed trefoils. Using Bayesian association analysis (Gelman et al.,
2003; B̊åath, 2014) shown in Figure S2 we see there is weak evidence for a larger
probability of tying a left-handed trefoil than right-handed trefoil by participants
who usually wrote with their right hand than those who wrote with their left. Sim-
ilarly there is weak evidence for a larger probability of tying a right-handed trefoil
than left-handed trefoil by those who usually wrote with their left hand. However,
the proportion of participants who usually wrote with their left hand is quite low
so might not be wholly representative. A similar result can be found using the self
reported handedness data with those reporting as ambidextrous having a larger
probability of tying a left- than a right-handed trefoil. Acknowledging the small
sample size, most of those reporting as ambidextrous usually wrote with their right
hand which fits with the test of proportions for hand written with and trefoil tied.

Participants were asked to record their gender in a free-form box.

Tied correct knot
Y N Total

Gender
Male 19 17 36

Female 28 33 61
Other 2 1 3
Total 49 51 100

Table S3. Performance in experiment given gender

Table S3 shows the proportion of participants who tied the knot shown in the
video given their gender. It is clear to see that gender had no bearing on their
performance in the experiment.

Participants were also asked whether they knew how to tie a granny and a reef
knot.

Knot tied
Granny Reef Total

Knew how to tie a granny knot
Yes 17 13 30
No 45 25 70
Total 62 38 100

Table S4. Performance in experiment given knowledge of granny knots
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Knot tied
Granny Reef Total

Knew how to tie a reef knot
Yes 17 17 34
No 45 21 66
Total 62 38 100

Table S5. Performance in experiment given knowledge of reef knots

Tables S4 and S5 show the proportion of participants who tied granny and reef
knots given the self-reported knowledge. Approximately one third of participants
reported that they knew how to tie each knot. There is weak evidence that overall
bias towards granny knots over reef knots is stronger in those that self-reported
that they did not know how to tie these knots than those that did.
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S4. Association Analysis

Posterior simulations of the test of proportions generated using R package
Bayesian First Aid (B̊åath, 2014). The test of proportions assumes flat priors
constructed as a Beta(1,1) distribution.

(a) Posterior simulation of right trefoils tied (b) Posterior simulation of left trefoils tied

Figure S2. Figure S2a shows the posterior simulations of tying a right
handed trefoil by those who wrote with a specified hand. θ1 refers to
those who wrote with their right hand and tied a right trefoil whilst θ2
refers to those who wrote with their left hand and tied a right trefoil.
The differences θ1 − θ2 and θ2 − θ1 refer to the difference between these
groups. There is weak evidence that a larger probability of those who
write with their left hand tie a right handed trefoil than those who wrote
with their right hand. Figure S2b shows the posterior simulations of
tying left handed trefoils by those who wrote with either hand. θ1 refers
to those who wrote with their right hand and tied a left trefoil whilst θ2
refers to those who wrote with their left hand and tied a left trefoil. The
differences θ1−θ2 and θ2−θ1 refer to the difference between these groups.
There is weak evidence that a larger probability of those who write with
their right hand tie a left handed trefoil than those who wrote with their
left hand. If we look at both Figures S2a and S2b we see those who wrote
with their right hand were more likely to tie a left- than a right-handed
trefoil. Those who wrote with their left hand were slightly more likely
to tie a left handed trefoil than a right handed as the left handed trefoil
was the most common amongst both groups and there were relatively few
people reporting as writing with their left hand.
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Figure S3. Posterior simulation of LL knots tied given demonstration
knot. θ1 refers to those who were shown the knot LL and tied LL, θ2
those who were shown RR and tied LL, θ3 those who were shown LR and
tied LL and θ4 those who were shown RL and tied LL with θi− θj , (i, j ∈
{1, 2, 3, 4}, i 6= j) referring to the difference between groups. We see a
larger probability for those who were shown either LL or RR tying LL
than LR or RL, with those shown LL having the largest probability.
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Figure S4. Posterior simulation of RR knots tied given demonstration
knot. θ1 refers to those who were shown the knot LL and tied RR, θ2 those
who were shown RR and tied RR, θ3 those who were shown LR and tied
RR and θ4 those who were shown RL and tied RR with θi − θj , (i, j ∈
{1, 2, 3, 4}, i 6= j) referring to the difference between groups. We see a
larger probability for those who were shown either LL or RR tying RR
than LR or RL, with those shown RR having the largest probability.
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Figure S5. Posterior simulation of LR knots tied given demonstration
knot. θ1 refers to those who were shown the knot LL and tied LR, θ2
those who were shown RR and tied LR, θ3 those who were shown LR and
tied LR and θ4 those who were shown RL and tied LR with θi−θj , (i, j ∈
{1, 2, 3, 4}, i 6= j) referring to the difference between groups. We see a
larger probability for those who were shown either LR or RL tying LR
than LL or RR, with those shown LR having the largest probability.
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Figure S6. Posterior simulation of RL knots tied given demonstration
knot. θ1 refers to those who were shown the knot LL and tied RL, θ2
those who were shown RR and tied RL, θ3 those who were shown LR and
tied RL and θ4 those who were shown RL and tied RL with θi−θj , (i, j ∈
{1, 2, 3, 4}, i 6= j) referring to the difference between groups. We see a
larger probability for those who were shown either LR or RL tying RL
than LL or RR, with those shown RL having the largest probability.
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(a) Posterior simulation of knots tied by those
with a left hand bias when tested under asocial
conditions

(b) Posterior simulation of knots tied by those
with a right hand bias when tested under aso-
cial conditions

Figure S7. Posterior simulations of first tying an L or R knot following
demonstration given a left-hand bias under asocial conditions. θ1 refers
to those who had a left hand bias under asocial conditions and tied an
L knot first following demonstration, θ2 those who had a left hand bias
and tied an R knot first and θ1 − θ2 and θ2 − θ1 the difference between
groups. We see there is a larger probability of those who had a left hand
bias starting their post-demonstration knot with an L knot than an R.
Figure S7b shows the simulations of tying an L or R knot first following
demonstration given a right hand bias under asocial conditions. θ1 refers
to those who had a right hand bias under asocial conditions and tied an
L knot first following demonstration, θ2 those who had a right hand bias
and tied an R knot first and θ1 − θ2 and θ2 − θ1 the difference between
groups. We see there is a larger probability of those who had a right hand
bias starting their post-demonstration knot with an R knot than an L.
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S5. Recursion Equations

The equations are

(S4)

f ′RR =fRR((1− g)s2 + (1− s)2(1− r)p2 + (1− s)2rp+ 2(1− g)s(1− s)r)
+2(1− g)s(1− s)(1− r)p
+fLL((1− s)2(1− r)p2 + (1− s)2rp+ gs2 + 2gs(1− s)r)
+2gs(1− s)(1− r)p
+(fRL + fLR)((1− s)2(1− r)p2 + (1− s)2rp+ s(1− s)r
+s(1− s)(1− r)p)

(S5)

f ′LL =fRR(gs2 + (1− s)2(1− r)(1− p)2 + (1− s)2r(1− p) + 2gs(1− s)r
+2gs(1− s)(1− r)(1− p))
+fLL((1− g)s2 + (1− s)2(1− r)(1− p)2 + (1− s)2r(1− p)
+2(1− g)s(1− s)(1− r)(1− p) + 2(1− g)s(1− s)r)
+(fRL + fLR)((1− s)2(1− r)(1− p)2 + (1− s)2r(1− p)
+s(1− s)(1− r)(1− p) + s(1− s)r)

(S6)

f ′RL =fRR((1− s)2(1− r)p(1− p) + (1− g)s(1− s)(1− r)(1− p)
+g(1− s)s(1− r)p)
+fLL((1− s)2(1− r)p(1− p) + (1− g)(1− s)s(1− r)p
+gs(1− s)(1− r)(1− p))
+fRL((1− g)s2 + (1− s)2(1− r)p(1− p) + (1− g)s(1− s)(1− r))
+fLR(gs2 + (1− s)2(1− r)p(1− p) + gs(1− s)(1− r))

(S7)

f ′LR =fRR((1− s)2(1− r)(1− p)p+ (1− g)(1− s)s(1− r)(1− p)
+gs(1− s)(1− r)p)
+fLL((1− s)2(1− r)(1− p)p+ (1− g)s(1− s)(1− r)p
+g(1− s)s(1− r)(1− p))
+fRL(gs2 + (1− s)2(1− r)(1− p)p+ gs(1− s)(1− r))
+fLR((1− g)s2 + (1− s)2(1− r)(1− p)p+ (1− g)s(1− s)(1− r))



THE CULTURAL EVOLUTION OF KNOT TYING 13

S6. Equilibria Equations

Equilibria occur when

f̂RR =
Q1

P

where

(S8)

Q1 = −p2(r − 1)(s− 1)(1 + s(2g − 1)(r − 1) + rs2(2g − 1)) + gs(r(s2 − 2)− s)
+ p(s− 1)(2gs+ r2s(2g − 1)(1 + s) + r(1 + s− 2gs(2− s)))

f̂LL =
Q2

P
where

(S9) Q2 = s2(1− g)− p2(r − 1)(s− 1)(1 + s(2g − 1)(r − 1) + rs2(2g − 1))− 1

+ r(s(1− 2g) + s3(g − 1)) + p(s− 1)(r2s(2g − 1)(1 + s)

+ 2s(g − 1) + rs(1 + (3− 4g)− 2s2(g − 1))− 2)

f̂LR =
Q3

P
where

(S10) Q3 = (r − 1)(gs− p(s− 1)(1 + p2(s− 1))(1 + (2g − 1)(s(r − 1) + rs2)))

f̂RL =
Q4

P
where

(S11) Q4 = (r − 1)(gs− p(s− 1)(1 + p2(s− 1))(1 + (2g − 1)(s(r − 1) + rs2)))

and

(S12) P = (1 + s)(s(2g − 1)(rs− r − 1)− 1).
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S7. Stability

In this system, an equilibrium point is stable if no matter the starting values
of fRR, fLL, fLR, fRL, the system comes to rest at the same point. If the point
changes depending on these starting values then it is not stable.

To find the stable equilibrium points we set fij equal to the equilibria points
determined by the equations, plus some small perturbation εij. The equilibrium is
stable if the value of f ′ij, moves towards the equilibria points given by the equations
in Appendix S6.

Let

(S13) fRR =
Q1

P
+ εRR

(S14) fLL =
Q2

P
+ εLL

(S15) fLR =
Q3

P
+ εLR

(S16) fRL =
Q4

P
+ εRL

where Qi and P are as given in Appendix S6, and

(S17) εRL = −εRR − εLL − εLR
to ensure fij sum to one.

We then compute f ′RR, f ′LL, f ′LR, f ′RL and the distance:

(S18) dRR = f ′RR −
Q1

P

(S19) dLL = f ′LL −
Q2

P

(S20) dLR = f ′LR −
Q3

P

(S21) dRL = f ′RL −
Q4

P

We then have the following cases.
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Case 1:

(S22) dij = 0

In this case the system jumps to an equilibrium point given by the parameters.
The system then remains at this point for all generations. This occurs when s = 0.
The system is not affected by starting values of fij, the frequency of each type of
knot is determined solely by the values of p and r.

Case 2:

(S23) dij = εij

In this case there is no change in the system, meaning the system is currently
at equilibria, with the system remaining at this point for all generations. This
occurs when copying is always accurate and mirroring never occurs, when s = 1
and g = 0. The equilibrium state is determined by the starting values of fij and is
independent of the values of p and r. The frequency of each type of knot remains
constant across generations.

Case 3:

(S24) dij < εij

In this case the system moves towards the equilibrium point given by the param-
eters. This occurs when s < 1 and the system evolves towards equilibria over
generations.

Case 4:

(S25) dij > εij

In this case the system moves away from the equilibrium point given by the pa-
rameters. This never occurs for any equilibrium point in the system, meaning all
points are stable.
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S8. Barycentric Coordinates

We plot a tetrahedron with vertices at the points

1
0
0

,

0
1
0

,

0
0
1

 and

1
1
1

.

Taking values of f ′ij from our equations, we can represent the values of f ′ij as
points p inside the tetrahedron using the conversion

(S26) p =

f ′RR + f ′RL

f ′LL + f ′RL

f ′LR + f ′RL


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S9. Non-parametric Estimate of Equilibrium State

Following Claidière et al. (2014), we construct a transmission matrix taken di-
rectly from the experimental data (Table 1), which represents the probability of
the change in knot types from those demonstrated to those learned. For example
x2,1 = P (LL|RR) is the probability of tying knot LL when shown RR.

(S27) X =


14
26

9
26

1
26

2
26

9
25

15
25

0 1
25

4
24

4
24

8
24

8
24

6
25

1
25

6
25

12
25


X is a right stochastic matrix representing the frequency of change in knots

tied given by the experimental data. We can simulate social transmission of these
knots within future generations by taking powers of this matrix, basing future gen-
erations solely on the present state. This approach treats any parameters affecting
change in cultural variant frequency as implicit, linear effects in the transition
matrix. After 20 generations we have stability in transmission such that the prob-
ability of tying any given knot remains constant (measured to 3 decimal places).

Knot Parametric Non-parametric
LL 41.5% 40.1%
RR 41.5% 39.1%
LR 8.5% 7.2%
RL 8.5% 13.6%

Table S6. Percentage of each type of knot at equilibrium predicted by
the parametric social transmission model, using ABC-derived mean pos-
terior parameter values, and the non-parametric approach.

Table S6 shows that both the parametric and non-parametric models predict a
prevalence of granny over reef knots at equilibrium, but unlike the non-parametric
approach, the parametric social transmission model gives equal frequencies of both
reef knots. The non-parametric approach makes no theoretical assumptions over
how copying fidelity, mirroring, repetition and handedness bias interact so it is un-
surprising to find unequal reef knot frequencies. The parametric model behaviour
is, by definition, determined by the probabilistic interactions of (s, g, r, p) but the
model does not assume that individuals recognise or treat the two reef knots to
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be mathematically the same. The similarity in the predictions between the para-
metric and non-parametric approaches indicates that the ABC-derived parameter
estimates do a good job at estimating the steady state frequencies derived, using
the transition matrix, by the experiment data alone.
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S10. Closed System Model

Consider n variants, each of which occurs at frequency fi, where
∑n

i=1 fi = 1.
Frequencies in the subsequent cultural generation, f ′, are determined by oblique
transmission with copying fidelity s, where failure to copy variant i results in
randomly adopting one of the n− 1 other variants;

(S28) f ′i = sfi + (1− s)(1− fi)
n− 1

.

The equilibrium frequency f̂i = 1
n
.
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S11. Equilibrium Distribution Given Sampled Parameter Values

The usage of the mean posterior values in Figure 5b results in the grey arrow’s
smooth evolutionary trajectory. This gives the assumption that the parameter
values are constant for each generation, however given the distribution of param-
eter values seen in Figure 5a it may be more accurate to the sample from that
distribution to simulate evolutionary frequencies each generation. Taking parame-
ter values in this way, the result gives evolutionary frequencies distributed around
the values resulting from taking the mean posterior values as constant parameter
values for each generation, as can be seen in Figure S8.

Figure S8. Equilibrium values of LL, RR, LR and RL determined by
sampling from the distribution of parameter values. The red lines on each
plot denote the equilibrium values determined by taking mean parameter
values constant over generations
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S12. Knots Frequencies After One Generation Given Sampled
Parameter Values

The equilibrium frequencies in Figure 5b demonstrate the prevalence of granny
knots over reef knots in the population when simulated over generations, but
sampling from the posterior distribution for the parameters p, g, r and s allows us
to explore the relative occurrence of each knot in one generation. Sampling from
the posterior of parameter values in a way that models the experiment gives the
frequency of each type of knot. In Figures S9a and S9b we show the frequency of
each knot type over repeated simulations with the maximum occurrence for each
knot being 25 to represent the demonstrations in the experiment. We see that
both granny knots, RR and LL, occur much more frequently than the reef knots
LR and RL.

(a) (b)

Figure S9. Part (a) shows the frequencies of LL, RR, LR and RL after
one generation determined by sampling parameter values from the pos-
terior distribution. We see that this results in higher occurrences of the
knots RR and LL than RL and LR. Part (b) shows the frequencies of
granny and reef knots after one generation determined by sampling pa-
rameter values from the posterior distribution. We see that this results
in higher occurrences of the knots granny knots over the reef with the
frequency of each type of knot overlayed.
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