
B Proofs 

B.1 Proof of Lemma 1 

Claim A1.1 When ߙଵ, ଶߙ ൑  there exists a unique, interior equilibrium ,∗ߙ
ሺݎଵ

∗, ଵݏ
∗, ଶݏ

∗ሻ ∈ ሺ0,1ሻଷ of this game. 

Proof of Claim A1.1 When ߙଵ, ଶߙ ൑ the problem of ௜ܵ ,∗ߙ , ݅ ∈ ሼ1,2ሽ is given 
by 

max
௦೔ஹ଴

	ሼ ݀α௜݌ሺݏ௜, ௜ሻݎ െ ܿሺݏ௜ሻ	ሽ	. 

For a given (conjectured) ݎଵෝ , ௜ܵ’s first-order condition is given by  

,௜ݏଵሺ݌௜ߙ݀ ො௜ሽሻݎ ൌ ܿᇱሺݏ௜ሻ ሺ2ሻ 

 

Because ܿᇱሺݏ௜ሻ → 0 as ݏ௜ → 0, and because ܿᇱሺݏ௜ሻ → ∞ as ݏ௜ → 1, the range of 
the right-hand side (RHS) is ሺ0,∞ሻ. As ݀ ൐ 0 and ݌ଵሺݏ௜, ො௜ሻݎ ൐ 0 for all ݎො௜ ∈
ሾ0,1ሿ, the left-hand side (LHS) is strictly positive for ߙ௜ ∈ ሺ0,1ሿ . Since ݌ሺݏ௜,  ො௜ሻݎ
is concave in ݏ௜ and ܿሺݏ௜ሻ is convex, LHS is decreasing in ݏ௜ and RHS is 
increasing in ݏ௜. These observations imply that there exists a unique solution 
௜ݏ
∗ሺݎො௜ሻ ∈ ሺ0,1ሻ to this equation. Clearly, the best reply function ݏ௜

∗ሺݎො௜ሻ is 
monotonically increasing if ݌ଵଶ ൐ 0, and monotonically decreasing if ݌ଵଶ ൏ 0. 
Because the function ݌ሺ⋅ሻ is concave and ܿሺ⋅ሻ is convex, this solution is the 
solution to the maximization problem (the second-order condition holds). 

The problem of the DM is given by 

max
ሼ௥భ,௥మሽ∈ሾ଴,ଵሿమ

ݔ̅ ൫ߙଵ݌ሺݏଵ, ଵሻݎ ൅ ,ଶݏሺ݌ଶߙ .ݏ	ଶሻ൯ݎ .ݐ ଵݎ ൅ ଶݎ ൌ 1 

											⇔ 	 max
௥భ∈ሾ଴,ଵሿ

ݔ̅ ൫ߙଵ݌ሺݏଵ, ଵሻݎ ൅ ,ଶݏሺ݌ଶߙ 1 െ ଵሻ൯ݎ

For given (conjectured) ݏଵෞ and ݏଶෞ, her first-order conditions (FOCs) are 
given by: 

ଵෝݏଶሺ݌ଵߙ൫ݔ̅ , ଵሻݎ െ ଶෝݏଶሺ݌ଶߙ , 1 െ ଵሻ൯ݎ ൌ 0 ሺ3ሻ 

    where ݔത ൐ 0.  

We substitute the experts’ best reply functions from (2) into (3) and 
obtain 

ଵݏଶሺ݌ଵߙ
∗ሺݎଵሻ, ଵሻݎ ൌ ଶݏଶሺ݌ଶߙ

∗ሺ1 െ ,ଵሻݎ 1 െ .ଵሻݎ ሺ4ሻ 



An equilibrium which is interior must satisfy (4). We will now discuss the 
existence and uniqueness of equilibria in this communication game. 

 
 
First, we show that ݌ଶሺݏଵ

∗ሺݎଵሻ,  ଵ, i.e., that itsݎ ଵሻ is monotonically decreasing inݎ
derivative is negative. Differentiating ݌ଶሺݏଵ

∗ሺݎଵሻ,  ଵ, yieldsݎ ଵሻ with respect toݎ

ଵݏଶଵሺ݌
∗ሺݎଵሻ, ଵݏଵሻݎ

∗′ሺݎଵሻ ൅ ଵݏଶଶሺ݌
∗ሺݎଵሻ, .ଵሻݎ ሺ5ሻ 

Differentiating sender 1’s equilibrium condition, (2), with respect to ݎଵ	yields 

௜ߙ݀ ቀ݌ଵଵ൫ݏଵ
∗ሺݎଵሻ൯ݏଵ

∗′ሺݎଵሻ ൅ ଵݏଵଶ൫݌
∗ሺݎଵሻ൯ቁ ൌ ܿᇱᇱ൫ݏଵ

∗ሺݎଵሻ൯ݏଵ
∗ᇱሺݎଵሻ, 

ଵݏ
∗ᇲሺݎଵሻ ൌ

ଵݏଵଶ൫݌௜ߙ݀
∗ሺݎଵሻ൯

ܿᇱᇱ൫ݏଵ
∗ሺݎଵሻ൯ െ ଵݏଵଵ൫݌௜ߙ݀

∗ሺݎଵሻ൯
ሺ6ሻ 

Inserting (6) into (5) yields that the derivative of ݌ଶሺݏଵ
∗ሺݎଵሻ,  ଵሻ is negative if andݎ

only if 

ଵݏଵଶ൫݌௜ߙ݀
∗ሺݎଵሻ൯݌ଵଶ൫ݏଵ

∗ሺݎଵሻ൯

ܿᇱᇱ൫ݏଵ
∗ሺݎଵሻ൯ െ ଵݏଵଵ൫݌௜ߙ݀

∗ሺݎଵሻ൯
൅ ଵݏଶଶሺ݌

∗ሺݎଵሻ, ଵሻݎ ൏ 0.

Using the fact that ቀܿᇱᇱ൫ݏଵ
∗ሺݎଵሻ൯ െ ଵݏଵଵ൫݌௜ߙ݀

∗ሺݎଵሻ൯ቁ is strictly positive, we 
rearrange the formula to obtain 

ଵݏଵଶ൫݌௜ߙ݀
∗ሺݎଵሻ൯݌ଵଶ൫ݏଵ

∗ሺݎଵሻ൯ ൏ െ݌ଶଶሺݏଵ
∗ሺݎଵሻ, ଵሻݎ ቀܿᇱᇱ൫ݏଵ

∗ሺݎଵሻ൯ െ ଵݏଵଵ൫݌௜ߙ݀
∗ሺݎଵሻ൯ቁ 

ଵݏଵଶ൫݌
∗ሺݎଵሻ൯݌ଵଶ൫ݏଵ

∗ሺݎଵሻ൯

൏ ଵݏଵଵሺ݌
∗ሺݎଵሻ, ଵݏଶଶሺ݌ଵሻݎ

∗ሺݎଵሻ, ଵሻݎ െ
1
௜ߙ݀

ଵݏଶଶሺ݌
∗ሺݎଵሻ, ଵݏଵሻܿᇱᇱ൫ݎ

∗ሺݎଵሻ൯.



Because െ
ଵ

ௗఈ೔
ଵݏଶଶሺ݌

∗ሺݎଵሻ, ଵݏଵሻܿᇱᇱ൫ݎ
∗ሺݎଵሻ൯ ൐ 0, this condition is implied by 

global con- cavity. This establishes that ݌ଶሺݏଵ
∗ሺݎଵሻ,  ଵሻ is monotonicallyݎ

decreasing in ݎଵ. 
Second, we show that there exists a unique interior equilibrium. Defining 

݃ሺݎଵሻ ≡ ଵݏଶሺ݌
∗ሺݎଵሻ, ଵሻݎଵሻ and ݄ሺݎ ≡ ଶݏଶሺ݌

∗ሺ1	 െ	ݎଵሻ, 1	 െ	ݎଵሻ we rewrite (4) as 

ଵሻݎଵ݃ሺߙ ൌ ଶ݄ሺ1ߙ െ .ଵሻݎ ሺ7ሻ 

Step 1 of this proof established that ݃ ሺݎଵሻ is decreasing. An analogous argument 
establishes that ݄ሺݎଶሻ ൌ ݄ሺ1 െ ଶݎ ଵሻ is decreasing inݎ ൌ 1 െ  ଵ (increasing inݎ
  .(ଵݎ

Further, because ݃ሺݎଵሻ ൌ ଵݏଶሺ݌
∗ሺݎଵሻ,  ଵሻ, the Inada conditionݎ

for	all	ݏ௜ ∈ ሾ0,1ሿ: ,௜ݏଶሺ݌ ௜ሻݎ ൐ 0	for	all	ݎ௜ ∈ ሾ0,1ሻ and ݌ଶሺݏ௜, ௜ሻݎ → 0 as ݎ௜ → 1 ሺ8ሻ 

yields  

݃ሺݎଵሻ ൐ 0 for all ݎଵ ∈ ሾ0,1ሻ and ݃ሺݎଵሻ → 0 as ݎଵ → 1 ሺ9ሻ 

	݄ሺݎଶሻ ൐ 0 for all ݎଶ ∈ ሾ0,1ሻ and ݄ሺݎଶሻ → 0 as ݎଶ → 1, 

where the latter can be re-written as 

݄ᇱሺ1 െ ଵሻݎ ൐ 0 for all ݎଵ ∈ ሺ0,1ሿ and ݄ᇱሺ1 െ ଵሻݎ → 0 as ݎଵ → 0, ሺ10ሻ 

By (9), when ݎଵ tends to one, LHS of (7) tends to zero and RHS is strictly greater 
than zero. By (10), when ݎଵ tends to zero, RHS tends to zero and LHS is strictly 
greater than zero. Thus, there exists an interior equilibrium ݎଵ

∗ ∈ ሺ0,1ሻ, as these 
must cross. Moreover, they cross at most once, so the solution ݎଵ

∗ is unique. By 
arguments analogous to those given above, the second-order condition is 
satisfied. 

From the above two steps, we conclude that the unique interior equilibrium 
is given by ሺݎଵ

∗, ଵݏ
∗, ଶݏ

∗ሻ ∈ ሺ0,1ሻଷ, where ݎଵ
∗ ∈ ሺ0,1ሻ is the solution derived above, 

ଵݏ
∗ ൌ ଵݏ

∗ሺݎଵ
∗ሻ, and ݏଶ

∗ ൌ ଶݏ
∗ሺ1 െ ଵݎ

∗ሻ. 
Third, we show that there exists no equilibrium in which the ܯܦ	devotes all 

her attention to only one of the experts. Suppose that there exists some 
equilibrium in which ݎ௜

∗ ൌ 0	for some ௜ܵ, w.l.o.g. for ଵܵ. However, (8), implies 

that, for any ݏଵ, 
డ௣ሺ௦భ,௥భሻ

డ௥భ
→ 0 as ݎଵ → 	1 and 

ப௣ሺ௦మ,௥మሻ

ப௥మ
൐ 0 as ݎଵ → 1. Thus, ݎ௜

∗ ൌ

0 cannot be optimal for the ܯܦ. Note that this is the case even if ݏଵ
∗ ൌ 1. 

Claim A1.2 When ߙଶ ൑ ∗ߙ ൏  ଵ, there exists a unique equilibriumߙ



ሺݎଶ
∗, ଶݏ

∗, 0ሻ. 

Proof of Claim A1.2 When αଵ ൐ α∗ and αଶ ൑ α∗, ܵ ଵ's problem is given by 

max
௦భஹ଴

	ሼ݀ െ ,ଵݏሺ݌ ଵሻሺ1ݎ െ ଵሻ݀ߙ െ ܿሺݏଵሻሽ . 

 

Because the first-order derivative w.r.t ݏଵ is negative, ݏଵ
∗ ൌ 0. 

The problem of ܵଶ is identical to the experts’ problem in the case when 
,ଵߙ ଶߙ ൑ ଶݏ as above. Thus, ܵଶ’s (unique) best reply function ∗ߙ

∗ሺݎଶෝሻ) is 
monotonically increasing if ݌ଵଶ ൐ 0 and monotonically decreasing if ݌ଵଶ ൏ 0. 

 The problem of the ܯܦ is given by 

max
௥భ∈ሾ଴,ଵሿ

൛ߙଵ̅ݔ ൅ ሺ1 െ ݔଵሻߙ െ ,ଵݏሺ݌ ଵሻሺ1ݎ െ ݔଵሻߙ ൅ ,ଶݏሺ݌ଶߙݔ̅ 1 െ ଵሻൟݎ . 

For given (conjectured) ݏଵෝ 	and ݏଶෝ , her first-order conditions (FOCs) are given 
by 

⇔ െݔሺ1 െ ଵෝݏଶሺ݌ଵሻߙ , ଵሻݎ ൌ ଶෝݏଶሺ݌ଶߙݔ̅ , 1 െ  .ଵሻݎ

 We substitute in the experts’ best reply functions and obtain 

െݔሺ1 െ ,ଶሺ0݌ଵሻߙ ଵሻݎ ൌ ଶݏଶሺ݌ଶߙݔ̅
∗ሺ1 െ ,ଵሻݎ 1 െ .ଵሻݎ ሺ11ሻ 

 

Because െݔሺ1 െ αଵሻ ൐ 0 and ݌ଶሺ0,  ଵ, LHS of (11) isݎ ଵሻ is decreasing inݎ
decreasing in ݎଵ. Replicating the steps in the proof of case 1 above establishes 
that RHS is increasing in ݎଵ. As the Inada conditions stated in the proof of case 
1 are defined for all ݏଵ ∈ ሾ0,1ሿ, and hence for ݏଵ ൌ 0, an analogous argument 
yields that there exists a unique solution ݎଵ

∗ ∈ ሺ0,1ሻ to (11). Thus, there exists a 
unique interior equilibrium ሺݎଶ

∗, ଶݏ
∗, ଵݏ

∗ሻ ∈ ሺ0,1ሻଶ ∪ ሼ0ሽ of this game. Moreover, 
replicating the steps in the proof of case 1 establishes that there exists no 
equilibrium in which ݎ௜

∗ ൌ 0 for some ݅. 
We note that in this equilibrium, the ܯܦ engages in (one-sided) information 

acquisition relating to ܣଵ, i.e., she devotes some attention to this project even 
though ଵܵ makes no communication effort. In contrast, the ܯܦ and ܵଶ engage 
in two-sided communication.  

Claim A1.3 When ߙଵ, ଶߙ ൐ ଵݎfor, there exists a unique equilibrium ሺ ∗ߙ
∗, 0,0ሻ ∈

ሺ0,1ሻ ∪ ሼ0ሽ ∪ ሼ0ሽ of this game. 

Proof of Claim A1.3 Both experts' problems are given by the problem of ଵܵ in 



the proof of Claim A1.2. Hence, ݏଵ
∗ ൌ ଶݏ

∗ ൌ 0. The problem of the ܯܦ is given 
by 

 

max
௥భ∈ሾ଴,ଵሿ

	൛ߙଵ̅ݔ ൅ ሺ1 െ ݔଵሻߙ െ ,ଵݏሺ݌ ଵሻሺ1ݎ െ ݔଵሻߙ ൅ ݔଶ̅ߙ ൅ ሺ1 െ ݔଶሻߙ

െ ,ଶݏሺ݌ 1 െ ଵሻሺ1ݎ െ ൟݔଶሻߙ . 

For given (conjectured) ݏଵෝ  and ݏଶෝ , her first-order conditions (FOCs) are given 
by 

⇔ െݔሺ1 െ ଵෝݏଶሺ݌ଵሻߙ , ଵሻݎ ൌ െݔሺ1 െ ଶෝݏଶሺ݌ଶሻߙ , 1 െ  .ଵሻݎ

We substitute in the experts’ best reply functions and obtain 

ሺ1 െ ,ଶሺ0݌ଵሻߙ ଵሻݎ ൌ ሺ1 െ ଶሺ0,1݌ଶሻߙ െ .ଵሻݎ ሺ12ሻ 

An argument that is analogous to those presented in the proofs of Claim A1.1 
and Claim A1.2 yields that there exists a unique solution ݎଵ

∗ ∈ ሺ0,1ሻ to (12). 

B.2 Proof of Proposition 1 

Claim A2.1 Fix the attractiveness of expert 2's action, ߙଶ. The ܯܦ's attention 
devoted to Expert 1, ݎଵ

∗ሺߙଵሻ, is non-monotonic in ߙଵ. 

Proof of Claim A2.1 When ߙଵ ൑  and) ܯܦ ଵ affects theߙ an increase in ,∗ߙ
Expert 1) in two ways. First, it becomes more likely that the ܯܦ benefits from 
 ܯܦ ଵ. This direct effect makes communication more attractive, for both theܣ
and Expert 1. Second, the increase in ߙଵ has an indirect effect on the ܯܦ 
through its effect on Expert 1, and vice versa. Due to complementarity, an 
increase in one team member's effort raises the marginal productivity of the 
counterpart's effort. The direct and indirect effects thus reinforce each other, so 
both ݎଵ

∗ሺߙଵሻ and ݏଵ
∗ሺߙଵሻ are increasing in ߙଵ.  

When ߙଵ ൐ ෤ଵݔ ଵ increases, the DM becomes more convinced thatߙ as ,∗ߙ ൌ
ଵݎ ,ത, so the marginal value of acquiring information decreases. Henceݔ

∗ሺߙଵሻ is 
decreasing in ߙଵ. From Lemma 1, we know that ݏଵ

∗ሺߙଵሻ ൌ 0 in this region.  
At ߙ∗, the DM's default choice changes from not taking ܣଵ to taking ܣଵ, so 

the expert's communication effort drops to zero. Due to complementarity, this 
lowers the marginal benefit of the DM's effort, so her attention drops 
discontinuously. 

Claim A2.2 Fix the attractiveness of expert 2's action, ߙଶ. The expected utility 



of Sender 1 in equilibrium increases continuously with ߙଵ for ߙଵ ∈ ሺ0,  ,ሻ∗ߙ
increases discontinuously at ߙ∗, and increases continuously for ߙଵ ∈ ሺߙ∗, 1ሻ. 

Proof of Claim A2.2 For any ߙଵ ∈ ሺ0,1ሻ, an increase in ߙଵ	has a positive direct 
effect on the utility of Expert 1: for given effort levels on the part of Expert 1	and 
the ܯܦ, an increase in ߙ raises the probability that a trade will occur. In addition 
to this direct effect, an increase in ߙଵ affects Expert 1 because the optimal efforts 
change. I show that this second effect reinforces the direct effect. 

We start from ߙଵ ൌ ௅ߙ ൏  and the associated equilibrium ,∗ߙ
൫ݎଵ

∗ሺߙ௅ሻ, ଵݏ
∗ሺߙ௅ሻ, ଶݏ

∗ሺߙ௅ሻ൯ ∈ ሺ0,1ሻଷ (for a given ߙଶ). I compare Expert 1's 
expected utility in this equilibrium to that in an equilibrium where ߙଵ ൌ ுߙ ൌ
௅ߙ ൅ ுߙ ,ߝ	 ൏  ,ுߙ The equilibrium associated with .∗ߙ
൫ݎଵ

∗ሺߙுሻ, ଵݏ
∗ሺߙுሻ, ଶݏ

∗ሺߙுሻ൯ ∈ ሺ0,1ሻଷ, satisfies ݎଵ
∗ሺߙுሻ ൐ ଵݎ

∗ሺߙ௅ሻ and 
ଵݏ
∗ሺߙுሻ ൐ ଵݏ

∗ሺߙ௅ሻ. When ߙଵ ൑  for a given level of effort on the part of ,∗ߙ
Expert 1, his expected utility is increasing with the attention that he gets from the 
DM. Thus, even if Expert 1's effort were held fixed at ݏଵ

∗ሺߙ௅ሻ when	ߙଵ ൌ  ,ுߙ
Expert 1 would be strictly better off getting attention ݎଵ

∗ሺߙுሻ from the receiver 
than getting attention ݎଵ

∗ሺߙ௅ሻ ൏ ଵݎ
∗ሺߙுሻ. Clearly, then, Expert 1 is strictly better 

off in the equilibrium associated with ߙு – where the DM devotes attention 
ଵݎ
∗ሺߙுሻ to him and he plays his best reply, ݏଵ

∗ሺߙுሻ – than in the equilibrium 
associated with ߙ௅. Hence, the expected utility of Expert 1 in equilibrium 
increases with ߙଵ for ߙଵ ∈ ሺ0,  ሻ. Because all best reply functions and utility∗ߙ
functions are continuous, the expected utility increases continuously. 

When ߙଵ ൐  his expected utility is decreasing with the attention that he ,∗ߙ
gets from the DM. Sender 1's effort is fixed at zero when ߙଵ ൐  and the DM's ;∗ߙ
attention ݎଵ

∗ሺߙଵሻ is decreasing with ߙଵ. Thus, as ߙଵ increases, Expert 1's 
expected utility increases because he gets less (undesirable) attention from the 
receiver. Because all best reply functions and utility functions are continuous, the 
expected utility decreases continuously.  

At ߙ∗, Expert 1's effort cost drops discontinuously (to zero); moreover, the 
attention he receives drops discontinuously as the DM's decision rule changes 
from an opt-in to an opt-out rule. Both of these changes raise Expert 1's expected 
utility discontinuously. 

Claim A2.3 When Expert 2 wants the DM's attention ሺߙଶ ൑  Expert 2's ,(∗ߙ
expected utility is a strictly decreasing function of the attention given to the 
other expert, ݎଵ

∗ሺߙଵሻ. 

Proof of Claim A2.3 This follows immediately from the facts that (i) ௌܷమሺߙଵሻ 



is increasing in ݎଶ
∗ሺߙଵሻ for ߙଶ ൑ ଶݎ and (ii) ,∗ߙ

∗ሺߙଵሻ ൌ 1 െ ଵݎ
∗ሺߙଵሻ. Here, (i) 

follows from Claims 1 and 2, and (ii) is the DM's budget constraint. 

Claim A2.4 When Expert 2 does not want the DM's attention (ߙଶ ൐  ,(∗ߙ
Expert 2's expected utility is a strictly increasing function of the attention 
given to the other expert, ݎଵ

∗ሺߙଵሻ. 

Proof of Claim A2.4 This follows immediately from the facts that (i) ௌܷమሺߙଵሻ 
is decreasing in ݎଶ

∗ሺߙଵሻ for ߙଶ ൐ ଶݎ and (ii) ,∗ߙ
∗ሺߙଵሻ ൌ 1 െ ଵݎ

∗ሺߙଵሻ. Here, (i) 
follows from Claims 1 and 2, and (ii) is the DM's budget constraint. 

B.3 Proof of Corollary 1 

This follows from Claims 1, 3, and 4 of the proof of Proposition 1. 

B.4 Proof of Proposition 2 

I first establish a preliminary result: 

Lemma (Symmetric information outcome). Assume that the ܯܦ faces a 
cognitive constraint such that there exists a lower bound on the amount of (non-
zero) attention that she can give to any one sender; ݎ௜ ∈ ሼ0ሽ ∪ ,ݎൣ 1൧ for all ݅. 
Denote by ݐ൫ݎ൯ the highest number of senders that the DM can split her attention 
between if she splits her attention equally among them, given the cognitive 
constraint ݎ. Assume that there are ఈܰഥ  high-quality types ሺߙ ൌ -ഥ) and ఈܰ lowߙ
quality types ሺߙ ൌ ൯ݎ൫ݐ with ,(ߙ ൏ ఈܰഥ ≪ ఈܰ and ߙ ൏ ഥߙ ൏  Under .∗ߙ
symmetric information, there is an (essentially unique) equilibrium in which the 
 .൯ high-quality typesݎ൫ݐ communicates with exactly ܯܦ

I establish this Lemma in three steps. 

Claim A4.1 Assume that there are ஑ܰഥ ൒ 2 identical experts with ߙ ൌ αഥ ൏ α∗. 
Then, there exists a unique equilibrium of this game, in which ݎ௜

∗ ൌ
ଵ

ேಉഥ
. 

Proof of Claim A4.1 The problem of ௜ܵ, ݅ ∈ ሼ1,2,… , ஑ܰഥሽ is characterized in the 
proof of Lemma 1, and ௜ܵ 's unique best reply function is given by ݏ௜

∗ሺݎపෝሻ ∈ ሺ0,1ሻ. 
By symmetry, ݏଵ

∗ሺ⋅ሻ ൌ ⋯ ൌ ேಉഥݏ
∗ ሺ⋅ሻ ≡  is given by	ܯܦ ሺ⋅ሻ. The problem of the∗ݏ

 

max
ሼ௥భ,௥మ,…,௥ಿషభሽ	∈ሾ଴,ଵሿ൫

ಿಉഥషభ൯
൞xതߙ ൮݌ሺݏଵ, .	൅	ଵሻݎ . . ൅	݌ ቌݏே	, 1 െ ෍ ௜ݎ

௜ୀேಉഥ	ି	ଵ

௜	ୀ	ଵ

ቍ൲	ൢ	 



 

For given (conjectured) ݏଵෝ , … , ேഥഀݏ̂ , her first-order conditions yield 

ଵෝݏሺ݌߲ , ଵሻݎ

ଵݎ߲
ൌ ⋯ ൌ

,ேഥഀିଵݏ൫̂݌߲ ேഥഀିଵ൯ݎ

ேഥഀିଵݎ߲
ൌ
ேഥഀݏ൫̂݌߲ 	, 1 െ ∑ ௜ݎ

௜ୀேഥഀିଵ
௜	ୀ	ଵ ൯

߲൫1	 െ	∑ ௜ݎ
௜ୀேഥഀିଵ
௜	ୀ	ଵ 	൯

. 

 

 

Substituting the experts’ best reply functions into this condition yields 

,ଵሻݎሺ∗ݏሺ݌߲ ଵሻݎ

ଵݎ߲
ൌ ⋯ ൌ

൫1∗ݏ൫݌߲ െ ∑ ௜ݎ
௜ୀேഥഀିଵ
௜ୀଵ ൯	, 1 െ ∑ ௜ݎ

௜ୀேഥഀିଵ
௜ୀଵ ൯

߲൫1 െ ∑ ௜ݎ
௜ୀேഥഀିଵ
௜ୀଵ ൯

. ሺ13ሻ 

Clearly, ݎଵ
∗ ൌ ଶݎ

∗ ൌ ଷݎ
∗ ൌ ⋯ ൌ ேഥഀݎ

∗ ≡  exhausts her ܯܦ satisfies (13). Because the∗ݎ
attention constraint in any equilibrium, there exists a unique symmetric equilibrium 

of this game, given by ሺݎ∗, ሻ∗࢙ ൌ ቆ
ଵ

ேഥഀ
, ∗࢙ ቀ

ଵ

ேഥഀ
ቁቇ, where ࢙∗ ቀ

ଵ

ேഥഀ
ቁ is a vector 

൫ݏଵ
∗, … , ேഥഀݏ

∗ ൯ such that ݏ௜
∗ ൌ ∗ݏ ቀ

ଵ

ேഥഀ
ቁ for all ݅. 

There exists no asymmetric interior equilibrium (where ݎ௜
∗ ൐ 0 for all ݅  and ݎ௜

∗ ്
௝ݎ
∗ for some ݅, ݆ such that ݅ ് ݆). To see this, define ݃ሺݎ௜ሻ ≡ ,௜ሻݎሺ∗ݏଶሺ݌  ௜ሻ. By theݎ

proof of Lemma 1, ݃ሺݎ௜ሻ is strictly increasing in ݎ௜. Hence, if ݎ௜
∗ ് ௝ݎ

∗ for some ݅, ݆ 
such that ݅ ് ݆, (13) must be violated.  

There exists no equilibrium such that ݎ௜
∗ ൌ 0 for some ݅. This follows directly 

from (i) for all ݏ௜ ∈ ሾ0,1ሿ:
డ௣ሺ௦೔,௥೔ሻ

డ௥೔
൐ 0 for all ݎ௜ ∈ ሺ0,1ሻ, (ii) 

డ௣ሺ௦೔,௥೔ሻ

డ௥೔
→ 0 as ݎ௜ → 1, 

and (iii) 
డ௣ሺ௦೔,௥೔ሻ

డ௥೔
→ as ݎ௜ → 0. 

Thus, the symmetric equilibrium is the unique equilibrium of this game. 

Claim A4.2 Assume that the ܯܦ faces a cognitive constraint such that there 
exists a lower bound on the amount of (non-zero) attention that she can give 
to any one sender; ݎ௜ ∈ ሼ0ሽ ∪ ,ݎൣ 1൧ for all ݅. Then, there exists a unique 

equilibrium of this game, in which ݎ௜
∗ ൌ ଵ

௧൫௥൯
, where ݐ൫ݎ൯ is the highest 

number of senders that the ܯܦ can split her attention between, given the 
cognitive constraint ݎ. 

Proof of Claim A4.2 In the unconstrained optimum derived in the proof of 

Claim A4.1, as ஑ܰഥ increases, ݎ∗ ൌ
ଵ

ேಉഥ
≡ ሺ∗ݎ ஑ܰഥሻ decreases monotonically. 

Thus, there exists some integer ݐ൫ݎ൯such that ݎ∗ ቀݐ൫ݎ൯ቁ ൐ ݎ ൐ ൯ݎ൫ݐ൫∗ݎ ൅



1൯. By the proof of Claim A4.1, the ܯܦ strictly prefers to communicate 
with ݐ൫ݎ൯ senders over communicating with strictly fewer senders. Because 
the ܯܦ exhausts her attention constraint in any optimum, there exists a 

unique symmetric equilibrium of this game, given by ሺݎ∗, ሻ∗ܛ ൌ ൬
ଵ

௧
, ∗ܛ ቀ

ଵ

௧
ቁ൰, 

where ܛ∗ ቀ
ଵ

௧
ቁ is a vector ሺݏଵ

∗,… , ௧ݏ
∗ሻ such that ݏ௜

∗ ൌ ∗ݏ ቀ
ଵ

௧
ቁ for all ݅. This 

implies that the ܯܦ fares worse in an equilibrium where less than ݐ high 
type experts enter than in an equilibrium where ݐ (or more) high-quality 
types enter. 

Claim A4.3 Assume that the ܯܦ	faces a cognitive constraint ݎ and that 
there are ஑ܰഥ high-quality types ሺα ൌ αഥሻ and ஑ܰ low-quality types ൫α ൌ α൯, 
with ݐ൫ݎ൯ ൏ ஑ܰഥ ≪ ஑ܰ. Under symmetric information, the ܯܦ 
communicates with ݐ൫ݎ൯ high-quality types. 

Proof of Claim A4.3 Because αഥ ൐ α, and because the ܯܦ's expected utility 
from communication with an expert is increasing with the expert's type ሺߙ), 
the ܯܦ's expected utility from devoting attention ݎ ൌ -൯ to a highݎ൫ݐ/1
quality type is higher than her expected utility from devoting the same 
amount of attention to a low-quality type. Because ݐ൫ݎ൯ ൏ ஑ܰഥ, the ܯܦ only 
communicates with high types. By the proof of Claim A4.2, the ܯܦ 
communicates with exactly ݐ൫ݎ൯	high-quality types. 

Having established the Lemma, the proof now proceeds in four steps. 

Claim A4.4 When ݍௌ ∈ ቀݍௌ,  ௌതതതቁ, there exists a fully revealing equilibriumݍ

where only high-quality experts approach the DM. She obtains the same 
expected decision payoff as under perfect information. 

Proof of Claim A4.4 We derive conditions under which equilibria with cue 
communication exist. We postulate an equilibrium such that ܲ high-quality 
types send cues to the ܯܦ, where ݐ ൑ ܲ ൑ ஑ܰഥ, zero low-quality types send 
a cue to the ܯܦ, and the ܯܦ devotes ݎ௧

∗ ൌ  experts chosen randomly ݐ	to ݐ/1
among the ܲ high-quality types who send a cue, where ݐ ≡  തሻ, and zeroݎሺݐ
attention to all other experts. In such an equilibrium, a low-quality type 
refrains from sending a cue iff 

௦ݍ ൐ ݐ
1

ܲ ൅ 1
ቈ݀݌ߙ ൬ݏఈ∗ ൬

1
ݐ
൰ ,
1
ݐ
൰ െ ܿ ቆݏఈ∗ ൬

1
ݐ
൰ቇ቉ . ሺ14ሻ 

 



Exactly P high-quality types send a cue iff 

 

 

ݐ
1

ܲ ൅ 1
ቈ݀ߙഥ݌ ൬ݏఈഥ

∗ ൬
1
ݐ
൰ ,
1
ݐ
൰ െ ܿ ቆݏఈഥ

∗ ൬
1
ݐ
൰ቇ቉ ൏  																																ௌݍ

																																														൏ ݐ
1
ܲ
ቈ݀ߙഥ݌ ൬ݏఈഥ

∗ ൬
1
ݐ
൰ ,
1
ݐ
൰ െ ܿ ቆݏఈഥ

∗ ൬
1
ݐ
൰ቇ቉ 	ሺ15ሻ 

 

The fact that ݏ஑ഥ
∗ ቀ

ଵ

௧
ቁ is a high-quality type’s best reply implies that 

 

݌ഥߙ݀ ൬ݏఈ∗ ൬
1
ݐ
൰ ,
1
ݐ
൰ െ ܿ ቆݏఈ∗ ൬

1
ݐ
൰ቇ ൏ ݌ഥߙ݀ ൬ݏఈഥ

∗ ൬
1
ݐ
൰ ,
1
ݐ
൰ െ ܿ ቆݏఈഥ

∗ ൬
1
ݐ
൰ቇ . ሺ16ሻ 

 

By (16), (15) implies (14). Hence, if (15) is satisfied, the postulated 
equilibrium is incentive compatible for all experts. By (16), there exists a 
nonempty range of ݍௌ such that (15) is satisfied. 

Because only high-quality types send cues, an expert’s cue 
communication decision reveals his type, so the ܯܦ need not assimilate the 
cues. By the proof of Claim A4.3, the ܯܦ’s preferred attention allocation 
is to communicate with t high- quality types. She is indifferent between the 
P high-quality types who send cues to her. Thus, randomizing between all 
experts who send her a cue, and devoting zero attention to all experts who 
do not, is incentive compatible for the ܯܦ. Hence, the postulated FRE exists 
if (15) holds. 

The FRE is such that all ஑ܰഥ high-quality types send cues in equilibrium 
(but, if there were ஑ܰഥ 	൅ 	1 high-quality types, the last one would not enter) 
when ݍௌ satisfies 

 

ݐ
1

஑ܰഥ ൅ 1
ቈ݀ߙഥ݌ ൬ݏఈഥ

∗ ൬
1
ݐ
൰ ,
1
ݐ
൰ െ ܿ ቆݏఈഥ

∗ ൬
1
ݐ
൰ቇ቉ ൏  																																	ௌݍ

 



																																														൏ ݐ
1

ఈܰഥ
ቈ݀ߙഥ݌ ൬ݏఈഥ

∗ ൬
1
ݐ
൰ ,
1
ݐ
൰ െ ܿ ቆݏఈഥ

∗ ൬
1
ݐ
൰ቇ቉ ሺ17ሻ 

The left-hand side of (17) gives the expected utility from entry in the 
presence of ஑ܰഥ  high-quality types for a (hypothetical) ሺ ஑ܰഥ ൅ 1ሻth high-
quality type. The expected utility from entry in the presence of ஑ܰഥ high-
quality types is strictly smaller for a low-quality type. Thus, denoting this 
expected utility by ݍௌ, we have  

ௌݍ ൏ ݐ
1

ఈܰഥ ൅ 1
ቈ݀ߙഥ݌ ൬ݏఈഥ

∗ ൬
1
ݐ
൰ ,
1
ݐ
൰ െ ܿ ቆݏఈഥ

∗ ൬
1
ݐ
൰ቇ቉. 

There exists a FRE such that all ఈܰഥ  high-quality types send cues in 
equilibrium (but no low-quality type) when ݍௌ satisfies: 

ௌݍ ൏ ௌݍ ൏ ݐ
1

ఈܰഥ
ቈ݀ߙഥ݌ ൬ݏఈഥ

∗ ൬
1
ݐ
൰ ,
1
ݐ
൰ െ ܿ ቆݏఈഥ

∗ ൬
1
ݐ
൰ቇ቉ . ሺ18ሻ 

The FRE is such that exactly ݐ high-quality types send cues in equilibrium 
(but no low-quality type) when ݍௌ satisfies 

ݐ
1

ݐ ൅ 1
ቈ݀ߙത݌ ൬ݏఈഥ

∗ ൬
1
ݐ
൰ ,
1
ݐ
൰ െ ܿ ቆݏఈഥ

∗ ൬
1
ݐ
൰ቇ቉ ൏  																																			ௌݍ

																																										൏ ቈ݀ߙത݌ ൬ݏఈഥ
∗ ൬
1
ݐ
൰ ,
1
ݐ
൰ െ ܿ ቆݏఈഥ

∗ ൬
1
ݐ
൰ቇ቉ 

Thus, the FRE in which ݐ	or more high-quality types (but no low-quality 

type) send cues to the ܯܦ	exist iff ݍௌ ൐ ௌݍ ௌ andݍ ൏ ቂ݀αഥ݌ ቀݏ஑ഥ
∗ ቀ

ଵ

௧
ቁ ,

ଵ

௧
ቁ െ

ܿ ൬ݏ஑ഥ
∗ ቀ

ଵ

௧
ቁ൰ቃ ≡  s expected utility, in any of these equilibria, is'ܯܦ ௌതതത. Theݍ

given by ܷோ
∗ ൌ ݌ݐഥߙതݔ ቀݏ஑ഥ

∗ ቀ
ଵ

௧
ቁ ,

ଵ

௧
ቁ, which is the same decision payoff as she 

obtains in the perfect information case. 

Claim A4.5 When ݍௌ falls below ݍௌ, low-quality experts also approach the 

receiver. She must either accept a lower expected decision payoff or 
intensify her search for high-quality senders. In either case, her expected 

utility is strictly lower than when ݍௌ ∈ ቀݍௌ,  .ௌതതതቁݍ

Proof of Claim A4.5 We first show that when ݍௌ falls below ݍௌ, there exist 

only equilibria that make the ܯܦ strictly worse off than when ݍௌ ∈ ቀݍௌ,   .ௌതതതቁݍ

When ݍௌ falls below ݍௌ, (18) is violated. Thus, in any equilibrium with 



cue communication, at least one low-quality type sends a cue (and all high-
quality types). In such an equilibrium, the ܯܦ either (i) opens zero cues but 
randomly chooses to communicate with ݐ experts, or (ii) opens at least one 
cue. We show that both of these may be consistent with equilibrium play. 
We show this in the context of an equilibrium in which exactly one low-
quality type sends a cue. 

If the ܯܦ plays strategy (i), the equilibrium must satisfy 

 

ݐ

ఈܰഥ ൅ 2
ቈ݌ߙݏ ൬ݔఈ∗ ൬

1
ݐ
൰ ,
1
ݐ
൰ െ ܿ ቆݔఈ∗ ൬

1
ݐ
൰ቇ቉ ൏ qୗ	

																																						൏
ݐ

ఈܰഥ ൅ 1
ቈ݌ߙݏ ൬ݔఈ∗ ൬

1
ݐ
൰ ,
1
ݐ
൰ െ ܿ ቆݔఈ∗ ൬

1
ݐ
൰ቇ቉ 

 

where we use the fact that the ܯܦ will devote the same amount of attention 
to every expert with whom she communicates (as the experts’ types are their 
private information). We denote by Uୖ

୰ୟ୬ሺN஑ഥ, 1, tሻ the ܯܦ’s ex ante utility 
in this randomization equilibrium where ܰ ఈഥ  high-quality types and one low-
quality type send cues to the ܯܦ who chooses ݐ experts among them 
randomly. We have 

 

ܷோ
௥௔௡ሺ ఈܰഥ , 1, ሻݐ ൌ ሺߤതݔ ఈܰഥ , 1, ሻݐ ൤݌ߙ ൬ݏఈ∗ ൬

1
ݐ
൰ ,
1
ݐ
൰ ൅ ሺݐ െ 1ሻߙഥ݌ ൬ݏఈഥ

∗ ൬
1
ݐ
൰ ,
1
ݐ
൰൨ 

 

																																				൅ݔതαഥ൫1 െ ሺߤ ఈܰഥ , 1, ݌ݐሻ൯ݐ ൬ݏఈഥ
∗ ൬
1
ݐ
൰ ,
1
ݐ
൰ 

 

where ߤሺ ஑ܰഥ, 1,  ሻis the probability that the (only) low-quality type is amongݐ
the ݐ	experts that the ܯܦ	randomly picks from the ܰ ஑ഥ ൅ 1 available experts. 

Because ߤሺ ஑ܰഥ, 1, ሻݐ ൐,ܷோ
௥௔௡ሺ ஑ܰഥ, 1, ሻݐ ൏ ܷோ

∗ ൌ ݌ݐഥߙതݔ ቀݏఈഥ
∗ ቀ

ଵ

௧
ቁ ,

ଵ

௧
ቁ.  

If the ܯܦ instead plays strategy (ii), and if she commits to opening 
exactly one cue, her expected utility satisfies 

 

ܷோ
௖௨௘ሺ ఈܰഥ , 1, ሻݐ ൒ െݍோ ൅

ଵ

ேഥഀାଵ
݌ݐഥߙതݔ ቀݔఈഥ

∗ ቀ
ଵ

௧
ቁ ,

ଵ

௧
ቁ  



																								൅ ൬ ఈܰഥ

ఈܰഥ ൅ 1
൰ቆݔതߙഥ݌ ൬ݏఈഥ

∗ ൬
1
ݐ
൰ ,
1
ݐ
൰ ൅ ܷோ

௥௔௡ሺ ఈܰഥ െ 1,1, ݐ െ 1ሻቇ 

 

With probability 
ଵ

ேഥഀାଵ
, the ܯܦ opens the cue sent by the (only) low-quality 

type, in which case she communicates with the ݐ high-quality types and gets 

her preferred attention allocation. With probability 
ேಉഥ

ேಉഥାଵ
, the cue was sent 

by a high-quality type, so the ܯܦ communicates with this expert and 
randomly picks ሺݐ െ 1ሻ others. In this case, her ex ante expected decision 

utility is greater than or equal to ݔതߙഥ݌ ቀݏ஑ഥ
∗ ቀ

ଵ

௧
ቁ ,

ଵ

௧
ቁ ൅ ܷோ

௥௔௡ሺ ஑ܰഥ െ 1,1, ݐ െ

1ሻ(where the inequality is strict if the ܯܦ chooses to treat the identified 
high-quality type preferentially, at the expense of dropping one expert of 
unknown type). Because the ܯܦ does not obtain her preferred attention 
allocation with probability one, ܷோ

௖௨௘ሺ ஑ܰഥ, 1ሻ ൏ ܷோ
∗   

We now show that both (i) and (ii) may, depending on the parameter 
values, be preferred by the ܯܦ:  

In expectation, choosing ݐ experts at random among ஑ܰഥ ൅ 1 is strictly 
worse than observing one high-quality type and choosing the other ሺݐ െ 1ሻ 
at random, i.e., 

 
1

ఈܰഥ ൅ 1
݌ݐഥߙതݔ ൬ݔఈഥ

∗ ൬
1
ݐ
൰ ,
1
ݐ
൰

൅ ఈܰഥ

ఈܰഥ ൅ 1
ቆݔതߙഥ݌ ൬ݏఈഥ

∗ ൬
1
ݐ
൰ ,
1
ݐ
൰ ൅ ܷோ

௥௔௡ሺ ఈܰഥ െ 1,1, ݐ െ 1ሻቇ 

																																																								െܷோ
௥௔௡ሺ ఈܰഥ , 1, ሻݐ ൐ 0 ሺ19ሻ 

 

 

Equation (19) implies that there exists a non-empty range of ݍோ such that 
ܷோ
௖௨௘ሺ ஑ܰഥ, 1, ሻݐ ൐ ܷோ

௥௔௡ሺ ஑ܰഥ, 1,  ሻ, given byݐ

1

ఈܰഥ ൅ 1
݌ݐഥߙതݔ ൬ݔఈഥ

∗ ൬
1
ݐ
൰ ,
1
ݐ
൰

൅ ఈܰഥ

ఈܰഥ ൅ 1
ቆݔതߙഥ݌ ൬ݏఈഥ

∗ ൬
1
ݐ
൰ ,
1
ݐ
൰ ൅ ܷோ

௥௔௡ሺ ఈܰഥ െ 1,1, ݐ െ 1ሻቇ 

																																																											െܷோ
௥௔௡ሺ ఈܰഥ , 1, ሻݐ ൒ .ோݍ ሺ20ሻ 

We now note that when the ܯܦ prefers a strategy in which she commits to 



opening exactly one cue to a strategy in which she randomizes, the ܯܦ also 
prefers a strategy in which she opens at least one cue to randomization. 
Thus, whenever (20) is satisfied, the ܯܦ opens at least one cue. Because 
the left-hand side of (20) is finite, the reverse is true for large enough ݍோ, 
i.e., ܷோ

௖௨௘ሺ ஑ܰഥ, 1, ሻݐ ൏ ܷோ
௥௔௡ሺ ஑ܰഥ, 1,  .ሻݐ

Claim A4.6 When ݍௌ → 0, the number of low-quality experts who approach 
the ܯܦ	becomes so large that she ceases to screen experts for quality. The 
 s expected decision payoff is strictly smaller than that obtained in any'ܯܦ
equilibrium where cue communication takes place. 

Proof of Claim A4.6 Suppose that ஑ܰ  is infinite. As ݍௌ → 0, the number 
of low-quality types that wish to send a cue to the ܯܦ, ݊, approaches 

infinity, which implies that 
ேಉ

ேಉഥା௡
→ 1 and 

ேಉഥ
ேಉഥା௡

→ 0. Thus, 

ܷோ
௖௨௘ሺ ஑ܰഥ, ݊, ሻݐ → xതα݌ݐ ቀݔ஑∗ ቀ

ଵ

௧
ቁ ,

ଵ

௧
ቁ െ ோ. Because ܷோݍ

௥௔௡ሺ ஑ܰഥ, ݊, ሻݐ →

݌ݐߙതݔ ቀݔ஑∗ ቀ
ଵ

௧
ቁ ,

ଵ

௧
ቁ, the ܯܦ strictly prefers not to open any cue in the limit. 

In an equilibrium in which she randomizes, she is worse off, the larger the 
share of low-quality experts. Thus, she is clearly worse off than in any 
equilibrium where she reads cues. 

Claim A4.7 The decrease in the ܯܦ’s expected utility is monotonic for 
ௌݍ ൏  .ௌݍ

Proof of Claim A4.7 When the ܯܦ randomly chooses experts, this follows 

directly from the fact that 
ேಉ

ேಉഥା௡
 and 

ேಉഥ
ேಉഥା௡

 change monotonically with the 

number of entering low-quality types, ݊. So long as the ܯܦ opens cues, the 

value of opening one cue is decreasing with 
ேಉ

ேಉഥା௡
, which is monotonically 

increasing with ݊. 

 

B.5 Proof of Proposition 3 

Claim A5.1 If the ܯܦ assimilates one cue, she continues to assimilate cues 
until she identifies the relevant topic. 

Proof of Claim A5.1 Suppose that the ܯܦ has launched ݇ topics. Consider 
the first cue that the ܯܦ assimilates. She incurs the cost ݍோ. With 
probability 1/݇, she finds the relevant topic, and devotes all of her attention 
to this topic. With probability ሺ݇ െ 1ሻ/݇ she does not find the relevant 



topic. In this situation, the ܯܦ always assimilates a second cue: the cost of 
assimilation is still ݍோ; however, the probability that she identifies the 
relevant topic is 1/ሺ݇ െ 1ሻ ൐ 1/݇. Hence, if the ܯܦ assimilated the first 
cue, she assimilates a second cue in the event that the first topic is irrelevant. 
Repeating this argument yields that, if she assimilates one cue, she 
continues to assimilate cues until she finds the relevant topic. 

Claim A5.2 There exists a number of cues (topics) ݇ ∗ such that, if the ܯܦ obtains 
more than ݇∗ topics, then she assimilates no cue. Instead, she randomly chooses 
 .topics that she divides her attention between (equally) in the deliberation stage ݐ

Proof of Claim A5.2 Consider the ܯܦ's expected utility if she assimilates cues. 
If the first cue that she assimilates is the relevant one, which happens with 
probability 1/݇, then her expected payoff is ሺπ െ ߨ ோሻ, whereݍ ൌ തݔߙ ൅
ሺ1 െ αሻݔ െ ሺ0,1ሻሺ1݌ െ αሻݔ. That is, her expected payoff is the expected payoff 
from the action, adjusted for the fact that she may find out, through her 
information acquisition on the relevant topic, that the product quality is low (and 
opt out). When she devotes all of her attention to this topic, and the expert devotes 
zero effort, the probability that she obtains such information is given by ݌ሺ0,1ሻ 
in the event that the product quality indeed is low, which happens with 
probability ሺ1 െ αሻ. If the first cue that she assimilates is not the relevant one, 
which happens with probability ሺ݇ െ 1ሻ/݇, then she assimilates a second cue.  

If the second cue that she assimilates is the relevant one, which happens with 
probability 1/ሺ݇ െ 1ሻ, then her expected payoff is ሺπ െ  ோሻ. If the second cueݍ2
is not the relevant one, then she continues. Repeating this argument yields that 
her expected payoff from assimilating cues (until she finds the relevant one) is 
given by 
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If the ܯܦ does not assimilate any cue, but instead randomly chooses ݐ out of the ݇ 
cues available to her, her expected utility is given by πᇱ ൌ തݔߙ ൅ ሺ1 െ αሻݔ െ
௧

௞
݌ ቀ0, ଵ

௧
ቁ ሺ1 െ αሻݔ, since she chooses ݐ/݇ out of the topics available, and hence 

picks the relevant topic with probability ݐ/݇. Among the ݐ topics that she randomly 
chooses, she devotes 1/ݐ of her attention to each of them. Because ݔߙത ൅
ሺ1 െ αሻݔ ൐ 0, we have that πᇱ ൐ 0. Clearly, the ܯܦ strictly prefers to randomize 
over assimilating cues if the expert makes more than ݇∗ topics available. The ܯܦ 
prefers to randomize when her expected payoff from randomization exceeds her 
expected payoff from opening cues, i.e., when 
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We know that this holds when ݇ ൐ ݇∗. We denote the smallest number of topics 
such that the ܯܦ prefers to randomize by ݇∗∗.	Clearly, ݇∗∗ ൑ ݇∗. 

Claim A5.3 The expert either launches only one topic or launches at least ݇∗∗ 
topics. If ݍௌ is small, he launches at least ݇∗∗ topics. 

Proof of Claim A5.3 If the expert launches only one topic (the relevant one), then 
the ܯܦ devotes all of her attention to this topic. Thus, she opts out with probability 
ሺ0,1ሻሺ1݌ െ αሻ.  

If he launches more than one but fewer than ݇∗∗ topics, the ܯܦ assimilates cues 
until she finds the relevant topic. Then, she devotes all of her attention to this topic. 
Hence, she opts out with the same probability; however, the expert incurred a 
higher cost of making the (additional) topics available. Thus, the expert strictly 
prefers launching one topic to launching strictly more than one but fewer than ݇∗∗, 
topics. 

If he launches at least ݇∗∗ topics, the ܯܦ	randomly chooses ݐ	out of the 
݇∗∗topics, and devotes attention 1/ݐ	to each of the selected topics. In this case, she 

opts out with probability 
௧

௞
݌ ቀ0, ଵ

௧
ቁ ሺ1 െ αሻ ൏ ሺ0,1ሻሺ1݌ െ αሻ. Clearly, if the cost of 

launching a topic, ݍௌ, is small enough, the expert strictly prefers to launch at least 
݇∗∗ topics. 

 



Claim A5.4 When ݍௌ ൌ 0, the mandate to disclose the relevant topic has no effect 
on the ܯܦ’s expected utility; she does not process the relevant information at all. 

Proof of Claim A5.4 When ݍௌ → ∞, the number ݇ of topics launched goes to 

∞, and the probability that the ܯܦ opts out goes to ݈݅݉
௞→ஶ

ቂ௧
௞
݌ ቀ0, ଵ

௧
ቁ ሺ1 െ ሻቃߙ ൌ 0. 

Hence, the mandate to disclose the relevant topic has no effect on the ܯܦ's 
expected utility; the expected utility is simply given by ݔߙത ൅ ሺ1 െ αሻݔ, which is 
her expected utility in the absence of any mandate. 

 


