B Proofs
B.1 Proof of Lemma 1

Claim A1.1 When a4, a, < a”, there exists a unique, interior equilibrium
(r,s1,s3) € (0,1)3 of this game.

Proof of Claim A1.1 When a;,a, < a”, the problem of S;,i € {1,2} is given
by

rsn_géi {do;p(s;, 1) —c(sy) }.

For a given (conjectured) 73, S;’s first-order condition is given by
da;p1 (s, 7}) = c'(s) (2)

Because ¢'(s;) —» 0 as s; = 0, and because ¢'(s;) = o as s; — 1, the range of
the right-hand side (RHS) is (0, ). As d > 0 and p,(s;, ;) > 0 for all 7; €
[0,1], the left-hand side (LHS) is strictly positive for a; € (0,1] . Since p(s;, 7;)
is concave in s; and c(s;) is convex, LHS is decreasing in s; and RHS is
increasing in s;. These observations imply that there exists a unique solution
s;(7;) € (0,1) to this equation. Clearly, the best reply function s;(7;) is
monotonically increasing if p;, > 0, and monotonically decreasing if p;, < 0.
Because the function p(:) is concave and c(-) is convex, this solution is the
solution to the maximization problem (the second-order condition holds).

The problem of the DM is given by

{Tl,rrgg%,l]z x (ayp(sy,m) + azp(sz,rz)) s.t.r+r,=1

= v —
rlfg[%?(l]x (alp(sllrl) + a,p(sy, 1 7’1))

For given (conjectured) S; and S, her first-order conditions (FOCs) are
given by:

f(“1pz(§\1’7’1) —a;py(83,1— 7"1)) =0 3)

where x > 0.

We substitute the experts’ best reply functions from (2) into (3) and
obtain

a1 p2(s1(11),11) = azpy(s3(1 — 1), 1 —1y). (4)



An equilibrium which is interior must satisfy (4). We will now discuss the
existence and uniqueness of equilibria in this communication game.

First, we show that p, (s7(ry), 1) is monotonically decreasing in 1y, i.c., that its
derivative is negative. Differentiating p, (s; (r;), ;) with respect to 7y, yields

P21(51 (1), 11)57" (1) + P22 (51 (1), 10). (5)

Differentiating sender 1’°s equilibrium condition, (2), with respect to r; yields
dey (pua (s1G)si () + pra(s1G0))) = ¢ (s1(r))si' (1),

da;pi2(si (1))
¢"(s1(r)) — da;ip11 (s (r))

(6)

SHOE
Inserting (6) into (5) yields that the derivative of p,(sy (1), 71) is negative if and
only if

da;p;, (Sf (7’1))2912 (SI (H))
c" (SI (ﬁ)) - daipu(sik (7’1))

+ por(si(ry), 1) < 0.

Using the fact that (c”(sik (rl)) — daipll(s’{ (rl))) is strictly positive, we
rearrange the formula to obtain

daiplz(sik(ﬁ))l’u(SI(H)) < —p22(s7(r1), 1) (C”(SI(H)) - d“ipn(sf(rl)))

P12(3I (T1))P12(5I (7"1))
1
< p11(57(r1), 1)p22 (51 (1), 1y) — EPZZ(SI(H)’7‘1)C”(5I(7”1))-



Because —d%ipzz(s{ (7’1),7‘1)0”(5;k (rl)) > 0, this condition is implied by
global con- cavity. This establishes that p,(sj(r;),7;) is monotonically
decreasing in ;.

Second, we show that there exists a unique interior equilibrium. Defining
g(r) = p,(s1(ry), 1) and h(ry) = p,(s;(1 — 11),1 — 1) we rewrite (4) as

a,19(r) = axh(1 —1y). @)

Step 1 of this proof established that g(r;) is decreasing. An analogous argument
establishes that h(r,) = h(1 — ry) is decreasing in r, = 1 — r; (increasing in

7).
Further, because g(r;) = p,(s{(ry), 1), the Inada condition

forall s; € [0,1]: p,(s;,1;) > O forallr; € [0,1) and p,(s;,7;) > 0asr; > 1 (8)
yields
g(r)) >0forallr; €[0,1)and g(r;) » 0asr; —» 1 9)
h(r,) > 0 forallr, € [0,1) and h(r,) > 0asr, - 1,
where the latter can be re-written as
h'(1—7;) >0forallr, € (0,1]and h'(1 —7;) > 0asr, - 0, (10)

By (9), when ry tends to one, LHS of (7) tends to zero and RHS is strictly greater
than zero. By (10), when r; tends to zero, RHS tends to zero and LHS is strictly
greater than zero. Thus, there exists an interior equilibrium ;" € (0,1), as these
must cross. Moreover, they cross at most once, so the solution 77" is unique. By
arguments analogous to those given above, the second-order condition is
satisfied.

From the above two steps, we conclude that the unique interior equilibrium
is given by (17, s1,s5) € (0,1)3, where r;" € (0,1) is the solution derived above,
s;1 =s7(r),and s; = s5(1 —17).

Third, we show that there exists no equilibrium in which the DM devotes all
her attention to only one of the experts. Suppose that there exists some
equilibrium in which r;* = 0 for some S;, w.l.o.g. for S;. However, (8), implies
Op(s1,11) Op(sz,12)

2
0 cannot be optimal for the DM. Note that this is the case even if s; = 1.

that, for any s, —0asr, = 1and >0asr; = 1. Thus, ri" =

Claim A1.2 When a, < a” < ay, there exists a unique equilibrium



(12,52, 0).

Proof of Claim A1.2 When a; > a and a, < o, S;'s problem is given by
Isngéi {d —p(s1,7)(A — a)d —c(sy)}.
1>

Because the first-order derivative w.r.t s; is negative, s; = 0.

The problem of S, is identical to the experts’ problem in the case when
a,, a, < a* as above. Thus, S,’s (unique) best reply function s;(73)) is
monotonically increasing if p;, > 0 and monotonically decreasing if p;, < 0.

The problem of the DM is given by

rrel[%ﬁ]{alf + (1 —apx —p(sy, 1)1 — ay)x + ¥azp(sy, 1 — 1)}
T )y

For given (conjectured) §; and $5, her first-order conditions (FOCs) are given
by

© —x(1 — a)p,(§1,11) = Xayp,(S3, 1 — ).
We substitute in the experts’ best reply functions and obtain
—x(1 = ay)p,(0,11) = Xazp,(s3(1 —1p), 1 — 1), (11

Because —x(1 —ay) > 0 and p,(0,17) is decreasing in r;, LHS of (11) is
decreasing in r;. Replicating the steps in the proof of case 1 above establishes
that RHS is increasing in 7. As the Inada conditions stated in the proof of case
1 are defined for all s; € [0,1], and hence for s; = 0, an analogous argument
yields that there exists a unique solution r;" € (0,1) to (11). Thus, there exists a
unique interior equilibrium (75, s3,s;) € (0,1)? U {0} of this game. Moreover,
replicating the steps in the proof of case 1 establishes that there exists no
equilibrium in which r;* = 0 for some i.

We note that in this equilibrium, the DM engages in (one-sided) information
acquisition relating to A4, i.e., she devotes some attention to this project even
though S; makes no communication effort. In contrast, the DM and S, engage
in two-sided communication.

Claim A1.3 When a4, @, > a for, there exists a unique equilibrium (77, 0,0) €
(0,1) U {0} U {0} of this game.

Proof of Claim A1.3 Both experts' problems are given by the problem of S; in



the proof of Claim A1.2. Hence, s; = s; = 0. The problem of the DM is given
by

max] {alf + (1 -—a)x—p(syr)A—apx +ax+ (1 —ay)x

r1€[0,1
—p(sy,1—m)(A - az)&} .

For given (conjectured) §; and S5, her first-order conditions (FOCs) are given
by

© —x(1 = a)p2(51, 1) = —x(1 — ax)p (53,1 —1y).
We substitute in the experts’ best reply functions and obtain
(1= a)p,(0,11) = (1 — az)p, (0,1 — 7). (12)

An argument that is analogous to those presented in the proofs of Claim Al.1
and Claim A1.2 yields that there exists a unique solution ;" € (0,1) to (12).

B.2 Proof of Proposition 1

Claim A2.1 Fix the attractiveness of expert 2's action, a,. The DM's attention
devoted to Expert 1, ;' (a;), is non-monotonic in a;.

Proof of Claim A2.1 When a; < a”, an increase in a, affects the DM (and
Expert 1) in two ways. First, it becomes more likely that the DM benefits from
A;. This direct effect makes communication more attractive, for both the DM
and Expert 1. Second, the increase in a; has an indirect effect on the DM
through its effect on Expert 1, and vice versa. Due to complementarity, an
increase in one team member's effort raises the marginal productivity of the
counterpart's effort. The direct and indirect effects thus reinforce each other, so
both r{ (@) and s (a;) are increasing in a;.

When a; > a”, as a, increases, the DM becomes more convinced that X¥; =
X, so the marginal value of acquiring information decreases. Hence, 17 (@) is
decreasing in ;. From Lemma 1, we know that s{(a;) = 0 in this region.

At a*, the DM's default choice changes from not taking A; to taking A, so
the expert's communication effort drops to zero. Due to complementarity, this
lowers the marginal benefit of the DM's effort, so her attention drops
discontinuously.

Claim A2.2 Fix the attractiveness of expert 2's action, a,. The expected utility



of Sender 1 in equilibrium increases continuously with a,; for a; € (0,a”),
increases discontinuously at a*, and increases continuously for a; € (a*, 1).

Proof of Claim A2.2 Forany a; € (0,1), an increase in a; has a positive direct
effect on the utility of Expert 1: for given effort levels on the part of Expert 1 and
the DM, an increase in « raises the probability that a trade will occur. In addition
to this direct effect, an increase in a; affects Expert 1 because the optimal efforts
change. I show that this second effect reinforces the direct effect.

We start from a; =a; <a*, and the associated equilibrium
(rl* (ap),si(ay),ss (aL)) € (0,1)3 (for a given a,). I compare Expert 1's
expected utility in this equilibrium to that in an equilibrium where a; = ay =
a; + &, ay < a’. The equilibrium associated with ay,
(rl* (ay),si(ay),s; (aH)) € (0,1)3, satisfies 7(ay) > (a,) and
si(ay) > si(ay). When a; < a”, for a given level of effort on the part of
Expert 1, his expected utility is increasing with the attention that he gets from the
DM. Thus, even if Expert 1's effort were held fixed at s{(a;) when a; = ay,
Expert 1 would be strictly better off getting attention ;" (@) from the receiver
than getting attention 7y (a;) < r{ (ay). Clearly, then, Expert 1 is strictly better
off in the equilibrium associated with a; — where the DM devotes attention
17 (ay) to him and he plays his best reply, s;(ay) — than in the equilibrium
associated with «;. Hence, the expected utility of Expert 1 in equilibrium
increases with a; for a; € (0, a™). Because all best reply functions and utility
functions are continuous, the expected utility increases continuously.

When a; > a”, his expected utility is decreasing with the attention that he
gets from the DM. Sender 1's effort is fixed at zero when a; > a*; and the DM's
attention 77 () is decreasing with a,. Thus, as @, increases, Expert 1's
expected utility increases because he gets less (undesirable) attention from the
receiver. Because all best reply functions and utility functions are continuous, the
expected utility decreases continuously.

At a*, Expert 1's effort cost drops discontinuously (to zero); moreover, the
attention he receives drops discontinuously as the DM's decision rule changes
from an opt-in to an opt-out rule. Both of these changes raise Expert 1's expected
utility discontinuously.

Claim A2.3 When Expert 2 wants the DM's attention (a, < a*), Expert 2's
expected utility is a strictly decreasing function of the attention given to the
other expert, r; ().

Proof of Claim A2.3 This follows immediately from the facts that (i) Us, (a;)



is increasing in 13 (a;) for a, < a*, and (ii) 5 (a;) = 1 —r{ (a;). Here, (i)
follows from Claims 1 and 2, and (ii) is the DM's budget constraint.

Claim A2.4 When Expert 2 does not want the DM's attention (a, > a¥),
Expert 2's expected utility is a strictly increasing function of the attention
given to the other expert, r; ().

Proof of Claim A2.4 This follows immediately from the facts that (i) Us, (a;)
is decreasing in 15 (@) for a, > a*, and (ii) r; (@) = 1 — ;' (@,). Here, (i)
follows from Claims 1 and 2, and (ii) is the DM's budget constraint.

B.3 Proof of Corollary 1
This follows from Claims 1, 3, and 4 of the proof of Proposition 1.

B.4 Proof of Proposition 2
I first establish a preliminary result:

Lemma (Symmetric information outcome). Assume that the DM faces a
cognitive constraint such that there exists a lower bound on the amount of (non-
zero) attention that she can give to any one sender; r; € {0} U [f, 1] for all i.
Denote by t(g) the highest number of senders that the DM can split her attention
between if she splits her attention equally among them, given the cognitive
constraint r. Assume that there are N3 high-quality types (a« = @) and N, low-
quality types (a = a), with t(r) <Ny < N, and a <@ < a*. Under
symmetric information, there is an (essentially uni_que) equilibrium in which the
DM communicates with exactly ¢(r) high-quality types.

I establish this Lemma in three steps.

Claim A4.1 Assume that there are Ny = 2 identical experts with ¢ = @ < a.
Then, there exists a unique equilibrium of this game, in which r;* = %
o

Proof of Claim A4.1 The problem of S;, i € {1,2, ..., Ng} is characterized in the
proof of Lemma 1, and S;'s unique best reply function is given by s;(7;) € (0,1).

By symmetry, s1(-) = =+ = sy_(-) = s*(-). The problem of the DM is given by
i=Ng-—-1
max Xa| p(sy,m) +...+p| sy, 1— Z r
{TllTZ'-"'TN—1} E[O,l] N&—l)

i=1



For given (conjectured) 53, ..., Sy, her first-order conditions yield

dp(S1,11) e ap(§Na—1'rNa—1) _ ap(§Na 11— Zi:::Nla_lri)
on 0Tng—1 a(1 - Zi:::lvla_lri) '

Substituting the experts’ best reply functions into this condition yields

op(s*r)r) __op(s"(1-% 5" 'n) 1 - %)
S TS S B . (13)
or, o(1-y .)
Clearly, r{ = r; =r3 = -+ = ry_ = r’satisfies (13). Because the DM exhausts her

attention constraint in any equilibrium, there exists a unique symmetric equilibrium

of this game, given by (r*,s") = <$,S* (i)) where s” (i) is a vector
a a a

(s{, ...,s,"{,a) such that s/ = s* (i) for all i.

a
There exists no asymmetric interior equilibrium (where r;* > 0 forall i and r;* #

1" for some i, j such that i # j). To see this, define g(r;) = p,(s*(r;),7;). By the
proof of Lemma 1, g(;) is strictly increasing in 7;. Hence, if ;" # 77" for some i, j
such that i # j, (13) must be violated.

There exists no equilibrium such that r;* = 0 for some i. This follows directly

from (i) for all s; € [0,1]: ap(s‘ ") 5 0 for all r; € (0,1), (il) ——= ap(s‘ D, 0 as r, -1,
and (iii) 252D g5 7, 0.
Thus, the symmetric equilibrium is the unique equilibrium of this game.

Claim A4.2 Assume that the DM faces a cognitive constraint such that there
exists a lower bound on the amount of (non-zero) attention that she can give
to any one sender; r; € {0} U [ﬁ, 1] for all i. Then, there exists a unique

equilibrium of this game, in which r;" = where t(z) is the highest

1
=
number of senders that the DM can split her attention between, given the
cognitive constraint r.

Proof of Claim A4.2 In the unconstrained optimum derived in the proof of
Claim A4.1, as Ng increases, r* = i = r*(Ng) decreases monotonically.

Thus, there exists some integer t(r)such that r* (t(z)) >r> r*(t(z) +



1). By the proof of Claim A4.1, the DM strictly prefers to communicate
with t([) senders over communicating with strictly fewer senders. Because

the DM exhausts her attention constraint in any optimum, there exists a
unique symmetric equilibrium of this game, given by (r*,s*) = (%, s* G)),
where s* G) is a vector (s7,...,St) such that s; = s~ (%) for all i. This
implies that the DM fares worse in an equilibrium where less than t high
type experts enter than in an equilibrium where t (or more) high-quality
types enter.

Claim A4.3 Assume that the DM faces a cognitive constraint r and that
there are Ng high-quality types (a = @) and N, low-quality types (OL = g),
with t(z) < Ng &< Ng. Under symmetric information, the DM
communicates with t(f) high-quality types.

Proof of Claim A4.3 Because @ > «, and because the DM's expected utility
from communication with an expert is increasing with the expert's type («),
the DM's expected utility from devoting attention r = 1/ t(f) to a high-
quality type is higher than her expected utility from devoting the same
amount of attention to a low-quality type. Because t(z) < Ng, the DM only
communicates with high types. By the proof of Claim A4.2, the DM
communicates with exactly t(g) high-quality types.

Having established the Lemma, the proof now proceeds in four steps.

Claim A4.4 When g € (gs,%), there exists a fully revealing equilibrium

where only high-quality experts approach the DM. She obtains the same
expected decision payoff as under perfect information.

Proof of Claim A4.4 We derive conditions under which equilibria with cue
communication exist. We postulate an equilibrium such that P high-quality
types send cues to the DM, where t < P < Ng, zero low-quality types send
a cue to the DM, and the DM devotes 1" = 1/t to t experts chosen randomly
among the P high-quality types who send a cue, where t = t(¥), and zero
attention to all other experts. In such an equilibrium, a low-quality type
refrains from sending a cue iff

il (=0)  as




Exactly P high-quality types send a cue iff

<ctlan((D-<(s ()] as

ior () D<) <amn () D -<((). a0

By (16), (15) implies (14). Hence, if (15) is satisfied, the postulated
equilibrium is incentive compatible for all experts. By (16), there exists a
nonempty range of g such that (15) is satisfied.

Because only high-quality types send cues, an expert’s cue
communication decision reveals his type, so the DM need not assimilate the
cues. By the proof of Claim A4.3, the DM’s preferred attention allocation
is to communicate with t high- quality types. She is indifferent between the
P high-quality types who send cues to her. Thus, randomizing between all
experts who send her a cue, and devoting zero attention to all experts who
do not, is incentive compatible for the DM. Hence, the postulated FRE exists
if (15) holds.

The FRE is such that all N high-quality types send cues in equilibrium
(but, if there were Nz + 1 high-quality types, the last one would not enter)
when g satisfies

el (5 ()) <( )] <o




cenlan(® (=)

The left-hand side of (17) gives the expected utility from entry in the
presence of Ny high-quality types for a (hypothetical) (Ng + 1)th high-
quality type. The expected utility from entry in the presence of Ny high-
quality types is strictly smaller for a low-quality type. Thus, denoting this
expected utility by g5, we have

as < tNal+ 1 ldap (S% (%)%> - (S% (%)ﬂ

There exists a FRE such that all Nz high-quality types send cues in
equilibrium (but no low-quality type) when gg satisfies:

qs < qs < tNia [d&p (sg (%) ,%) —c (s% (%))l ) (18)

The FRE is such that exactly t high-quality types send cues in equilibrium
(but no low-quality type) when g satisfies

kafon () (5)] <»
<[on(s ()4)-<(s )

Thus, the FRE in which t or more high-quality types (but no low-quality
type) send cues to the DM exist iff q¢ > g5 and g5 < [dap (sg G) ,%) —

c (Soi( (%))] = qs. The DM's expected utility, in any of these equilibria, is
given by Up = Xatp (sg (%) ,%), which is the same decision payoff as she
obtains in the perfect information case.

Claim A4.5 When g5 falls below g5, low-quality experts also approach the

receiver. She must either accept a lower expected decision payoff or
intensify her search for high-quality senders. In either case, her expected

utility is strictly lower than when g5 € (qs,%).

Proof of Claim A4.5 We first show that when gg falls below g, there exist
only equilibria that make the DM strictly worse off than when g5 € (g S %)

When g5 falls below g, (18) is violated. Thus, in any equilibrium with



cue communication, at least one low-quality type sends a cue (and all high-
quality types). In such an equilibrium, the DM either (1) opens zero cues but
randomly chooses to communicate with t experts, or (ii) opens at least one
cue. We show that both of these may be consistent with equilibrium play.
We show this in the context of an equilibrium in which exactly one low-
quality type sends a cue.

If the DM plays strategy (i), the equilibrium must satisfy

T L)

where we use the fact that the DM will devote the same amount of attention
to every expert with whom she communicates (as the experts’ types are their
private information). We denote by U™ (Ng, 1,t) the DM’s ex ante utility
in this randomization equilibrium where Nz high-quality types and one low-
quality type send cues to the DM who chooses t experts among them
randomly. We have

UR*™(Ng, 1,£) = ¥u(Ng, 1,1) [ZP (S& (%) %) + (= Dap (55 (%) %)]

+%a(1 — u(Ng, 1,0)tp (53 (%) %)

where u(Ng, 1, t)is the probability that the (only) low-quality type is among
the t experts that the DM randomly picks from the N + 1 available experts.

Because p(Ng, 1,) >, U™ (Ng, 1,t) < Uy = xa@tp (55 (3) 7).

If the DM instead plays strategy (ii), and if she commits to opening
exactly one cue, her expected utility satisfies

UF™ (Na 1,0) = —qr + o xatn (v (2).3)



Na YO * 1 1 ran
() (7@ (si () ) + v e - 1060

With probability N%ﬂ, the DM opens the cue sent by the (only) low-quality

type, in which case she communicates with the t high-quality types and gets
her preferred attention allocation. With probability le—i‘l, the cue was sent
by a high-quality type, so the DM communicates with this expert and
randomly picks (t — 1) others. In this case, her ex ante expected decision
utility is greater than or equal to xap (sg (%) ,%) + UL (Ng — 1,1,t —
1)(where the inequality is strict if the DM chooses to treat the identified
high-quality type preferentially, at the expense of dropping one expert of
unknown type). Because the DM does not obtain her preferred attention
allocation with probability one, Ug*¢(Ng, 1) < Uy

We now show that both (i) and (i1) may, depending on the parameter
values, be preferred by the DM:

In expectation, choosing t experts at random among Ng + 1 is strictly
worse than observing one high-quality type and choosing the other (t — 1)
at random, i.e.,

e (% () )
N, + 1 %P \Xa\y) ¢

Na Xa * 1 1 yran - —
P\ sz 7 + UR*"(Nz —1,1,t — 1)

t
—UL(N4,1,t) > 0 (19)

Equation (19) implies that there exists a non-empty range of qp such that
Ug*¢(Ng, 1,t) > U (Ng, 1,t), given by

e (% () )
N, + 1P \¥a\7) ¢

Nz L (1) 1 ran
+ N+ 1 xXap (sa (?),?) + Ug*"(Nz — 1,1,t — 1)

—Ug*(Ng, 1,t) = qp. (20)

We now note that when the DM prefers a strategy in which she commits to



opening exactly one cue to a strategy in which she randomizes, the DM also
prefers a strategy in which she opens at least one cue to randomization.
Thus, whenever (20) is satisfied, the DM opens at least one cue. Because
the left-hand side of (20) is finite, the reverse is true for large enough gp,
ie, UR*®(Ng, 1,t) < UR*(Ng, 1, t).

Claim A4.6 When g — 0, the number of low-quality experts who approach
the DM becomes so large that she ceases to screen experts for quality. The
DM's expected decision payoff is strictly smaller than that obtained in any
equilibrium where cue communication takes place.

Proof of Claim A4.6 Suppose that Ny is infinite. As gg — 0, the number
of low-quality types that wish to send a cue to the DM, n, approaches

—-1 and Nan — 0. Thus,

Ng

infinity, which implies that

atn 54

Ug“¢(Ng, n, t) — Xatp (x& (%) , %) — gg. Because U (Ng,n,t) =

Xatp (xé (%) ,%), the DM strictly prefers not to open any cue in the limit.
In an equilibrium in which she randomizes, she is worse off, the larger the
share of low-quality experts. Thus, she is clearly worse off than in any
equilibrium where she reads cues.

Claim A4.7 The decrease in the DM’s expected utility is monotonic for
ds < gs-

Proof of Claim A4.7 When the DM randomly chooses experts, this follows

. N, _
directly from the fact that —=— and Na
Ng+n Ng+n

number of entering low-quality types, n. So long as the DM opens cues, the

change monotonically with the

. . . . Ng . . .
value of opening one cue is decreasing with P which is monotonically
a

increasing with n.

B.S Proof of Proposition 3

Claim AS5.1 If the DM assimilates one cue, she continues to assimilate cues
until she identifies the relevant topic.

Proof of Claim A5.1 Suppose that the DM has launched k topics. Consider
the first cue that the DM assimilates. She incurs the cost giz. With
probability 1/k, she finds the relevant topic, and devotes all of her attention
to this topic. With probability (k — 1)/k she does not find the relevant



topic. In this situation, the DM always assimilates a second cue: the cost of
assimilation is still qz; however, the probability that she identifies the
relevant topic is 1/(k — 1) > 1/k. Hence, if the DM assimilated the first
cue, she assimilates a second cue in the event that the first topic is irrelevant.
Repeating this argument yields that, if she assimilates one cue, she
continues to assimilate cues until she finds the relevant topic.

Claim AS.2 There exists a number of cues (topics) k* such that, if the DM obtains
more than k™ topics, then she assimilates no cue. Instead, she randomly chooses
t topics that she divides her attention between (equally) in the deliberation stage.

Proof of Claim AS5.2 Consider the DM's expected utility if she assimilates cues.
If the first cue that she assimilates is the relevant one, which happens with
probability 1/k, then her expected payoff is (m— qg), where ™= ax +
(1 —-o)x —p(0,1)(1 — a)x. That is, her expected payoff is the expected payoff
from the action, adjusted for the fact that she may find out, through her
information acquisition on the relevant topic, that the product quality is low (and
opt out). When she devotes all of her attention to this topic, and the expert devotes
zero effort, the probability that she obtains such information is given by p(0,1)
in the event that the product quality indeed is low, which happens with
probability (1 — a). If the first cue that she assimilates is not the relevant one,
which happens with probability (k — 1) /k, then she assimilates a second cue.

If the second cue that she assimilates is the relevant one, which happens with
probability 1/(k — 1), then her expected payoff is (Tt — 2qg). If the second cue
is not the relevant one, then she continues. Repeating this argument yields that
her expected payoff from assimilating cues (until she finds the relevant one) is
given by
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1+k . . . . .
Because g % increases in k without bond, there exists a k*such that

A+k) 1+ k"+1)
n—qRT>0>n—qR( > ).

If the DM does not assimilate any cue, but instead randomly chooses t out of the k
cues available to her, her expected utility is given by ' = ax + (1 — a)x —

ép (O,%) (1 — a)x, since she chooses t/k out of the topics available, and hence

picks the relevant topic with probability t/k. Among the t topics that she randomly
chooses, she devotes 1/t of her attention to each of them. Because aXx +
(1 — a)x > 0, we have that ™' > 0. Clearly, the DM strictly prefers to randomize
over assimilating cues if the expert makes more than k* topics available. The DM
prefers to randomize when her expected payoff from randomization exceeds her
expected payoff from opening cues, i.e., when

ax+ (1 - a)g—%p(O,%) (1-a)x
1+k)

>ax+ (1-a)x—p(0,1)(1 —a)x —qg >

We know that this holds when k > k*. We denote the smallest number of topics
such that the DM prefers to randomize by k**. Clearly, k** < k™.

Claim AS.3 The expert either launches only one topic or launches at least k**
topics. If g is small, he launches at least k** topics.

Proof of Claim AS.3 If the expert launches only one topic (the relevant one), then
the DM devotes all of her attention to this topic. Thus, she opts out with probability

p(0,1))(1 — ).

If he launches more than one but fewer than k** topics, the DM assimilates cues
until she finds the relevant topic. Then, she devotes all of her attention to this topic.
Hence, she opts out with the same probability; however, the expert incurred a
higher cost of making the (additional) topics available. Thus, the expert strictly
prefers launching one topic to launching strictly more than one but fewer than k™,
topics.

If he launches at least k™ topics, the DM randomly chooses t out of the
k**topics, and devotes attention 1/t to each of the selected topics. In this case, she
opts out with probability %p (0, %) (1 —-a) <p(0,1)(1 — a). Clearly, if the cost of
launching a topic, gs, is small enough, the expert strictly prefers to launch at least
k** topics.



Claim A5.4 When g = 0, the mandate to disclose the relevant topic has no effect
on the DM’s expected utility; she does not process the relevant information at all.

Proof of Claim A5.4  When g5 — o, the number k of topics launched goes to
oo, and the probability that the DM opts out goes to Igim [ip (0, %) 1- a)] = 0.
Hence, the mandate to disclose the relevant topic has no effect on the DM's
expected utility; the expected utility is simply given by ax + (1 — a)x, which is
her expected utility in the absence of any mandate.



