
B Proofs 

B.1 Proof of Lemma 1 

Claim A1.1 When , ∗, there exists a unique, interior equilibrium 
∗, ∗, ∗ ∈ 0,1  of this game. 

Proof of Claim A1.1 When , ∗, the problem of , ∈ 1,2  is given 
by 

max	 α , 	 	. 

For a given (conjectured) , ’s first-order condition is given by  

, 2  

 

Because → 0 as → 0, and because → ∞ as → 1, the range of 
the right-hand side (RHS) is 0,∞ . As 0 and , 0 for all ∈
0,1 , the left-hand side (LHS) is strictly positive for ∈ 0,1  . Since ,  

is concave in  and  is convex, LHS is decreasing in  and RHS is 
increasing in . These observations imply that there exists a unique solution 
∗ ∈ 0,1  to this equation. Clearly, the best reply function ∗  is 

monotonically increasing if 0, and monotonically decreasing if 0. 
Because the function ⋅  is concave and ⋅  is convex, this solution is the 
solution to the maximization problem (the second-order condition holds). 

The problem of the DM is given by 

max
, ∈ ,

̅ , , 	 . . 1 

											⇔ 	 max
∈ ,

̅ , , 1

For given (conjectured)  and , her first-order conditions (FOCs) are 
given by: 

̅ , , 1 0 3  

    where 0.  

We substitute the experts’ best reply functions from (2) into (3) and 
obtain 

∗ , ∗ 1 , 1 . 4  



An equilibrium which is interior must satisfy (4). We will now discuss the 
existence and uniqueness of equilibria in this communication game. 

 
 
First, we show that ∗ ,  is monotonically decreasing in , i.e., that its 

derivative is negative. Differentiating ∗ ,  with respect to , yields 

∗ , ∗′ ∗ , . 5  

Differentiating sender 1’s equilibrium condition, (2), with respect to 	yields 

∗ ∗′ ∗ ∗ ∗ , 

∗
∗

∗ ∗ 6  

Inserting (6) into (5) yields that the derivative of ∗ ,  is negative if and 
only if 

∗ ∗

∗ ∗
∗ , 0.

Using the fact that ∗ ∗  is strictly positive, we 
rearrange the formula to obtain 

∗ ∗ ∗ , ∗ ∗  

∗ ∗

∗ , ∗ ,
1 ∗ , ∗ .



Because ∗ , ∗ 0, this condition is implied by 

global con- cavity. This establishes that ∗ ,  is monotonically 
decreasing in . 

Second, we show that there exists a unique interior equilibrium. Defining 
≡ ∗ ,  and ≡ ∗ 1	 	 , 1	 	  we rewrite (4) as 

1 . 7  

Step 1 of this proof established that  is decreasing. An analogous argument 
establishes that 1  is decreasing in 1  (increasing in 

).  

Further, because ∗ , , the Inada condition 

for	all	 ∈ 0,1 : , 0	for	all	 ∈ 0,1  and , → 0 as → 1 8  

yields  

0 for all ∈ 0,1  and → 0 as → 1 9  

	 0 for all ∈ 0,1  and → 0 as → 1, 

where the latter can be re-written as 

1 0 for all ∈ 0,1  and 1 → 0 as → 0, 10  

By (9), when  tends to one, LHS of (7) tends to zero and RHS is strictly greater 
than zero. By (10), when  tends to zero, RHS tends to zero and LHS is strictly 
greater than zero. Thus, there exists an interior equilibrium ∗ ∈ 0,1 , as these 
must cross. Moreover, they cross at most once, so the solution ∗ is unique. By 
arguments analogous to those given above, the second-order condition is 
satisfied. 

From the above two steps, we conclude that the unique interior equilibrium 
is given by ∗, ∗, ∗ ∈ 0,1 , where ∗ ∈ 0,1  is the solution derived above, 
∗ ∗ ∗ , and ∗ ∗ 1 ∗ . 

Third, we show that there exists no equilibrium in which the 	devotes all 
her attention to only one of the experts. Suppose that there exists some 
equilibrium in which ∗ 0	for some , w.l.o.g. for . However, (8), implies 

that, for any , 
,

→ 0 as → 	1 and 
,

0 as → 1. Thus, ∗

0 cannot be optimal for the . Note that this is the case even if ∗ 1. 

Claim A1.2 When ∗ , there exists a unique equilibrium 



∗, ∗, 0 . 

Proof of Claim A1.2 When α α∗ and α α∗, 's problem is given by 

max 	 , 1 . 

 

Because the first-order derivative w.r.t  is negative, ∗ 0. 
The problem of  is identical to the experts’ problem in the case when 
, ∗ as above. Thus, ’s (unique) best reply function ∗ ) is 

monotonically increasing if 0 and monotonically decreasing if 0. 

 The problem of the  is given by 

max
∈ ,

̅ 1 , 1 ̅ , 1 . 

For given (conjectured) 	and , her first-order conditions (FOCs) are given 
by 

⇔ 1 , ̅ , 1 . 

 We substitute in the experts’ best reply functions and obtain 

1 0, ̅ ∗ 1 , 1 . 11  

 

Because 1 α 0 and 0,  is decreasing in , LHS of (11) is 
decreasing in . Replicating the steps in the proof of case 1 above establishes 
that RHS is increasing in . As the Inada conditions stated in the proof of case 
1 are defined for all ∈ 0,1 , and hence for 0, an analogous argument 
yields that there exists a unique solution ∗ ∈ 0,1  to (11). Thus, there exists a 
unique interior equilibrium ∗, ∗, ∗ ∈ 0,1 ∪ 0  of this game. Moreover, 
replicating the steps in the proof of case 1 establishes that there exists no 
equilibrium in which ∗ 0 for some . 

We note that in this equilibrium, the  engages in (one-sided) information 
acquisition relating to , i.e., she devotes some attention to this project even 
though  makes no communication effort. In contrast, the  and  engage 
in two-sided communication.  

Claim A1.3 When , ∗ for, there exists a unique equilibrium ∗, 0,0 ∈
0,1 ∪ 0 ∪ 0  of this game. 

Proof of Claim A1.3 Both experts' problems are given by the problem of  in 



the proof of Claim A1.2. Hence, ∗ ∗ 0. The problem of the  is given 
by 

 

max
∈ ,

	 ̅ 1 , 1 ̅ 1

, 1 1 . 

For given (conjectured)  and , her first-order conditions (FOCs) are given 
by 

⇔ 1 , 1 , 1 . 

We substitute in the experts’ best reply functions and obtain 

1 0, 1 0,1 . 12  

An argument that is analogous to those presented in the proofs of Claim A1.1 
and Claim A1.2 yields that there exists a unique solution ∗ ∈ 0,1  to (12). 

B.2 Proof of Proposition 1 

Claim A2.1 Fix the attractiveness of expert 2's action, . The 's attention 
devoted to Expert 1, ∗ , is non-monotonic in . 

Proof of Claim A2.1 When ∗, an increase in  affects the  (and 
Expert 1) in two ways. First, it becomes more likely that the  benefits from 

. This direct effect makes communication more attractive, for both the  
and Expert 1. Second, the increase in  has an indirect effect on the  
through its effect on Expert 1, and vice versa. Due to complementarity, an 
increase in one team member's effort raises the marginal productivity of the 
counterpart's effort. The direct and indirect effects thus reinforce each other, so 
both ∗  and ∗  are increasing in .  

When ∗, as  increases, the DM becomes more convinced that 
, so the marginal value of acquiring information decreases. Hence, ∗  is 

decreasing in . From Lemma 1, we know that ∗ 0 in this region.  
At ∗, the DM's default choice changes from not taking  to taking , so 

the expert's communication effort drops to zero. Due to complementarity, this 
lowers the marginal benefit of the DM's effort, so her attention drops 
discontinuously. 

Claim A2.2 Fix the attractiveness of expert 2's action, . The expected utility 



of Sender 1 in equilibrium increases continuously with  for ∈ 0, ∗ , 
increases discontinuously at ∗, and increases continuously for ∈ ∗, 1 . 

Proof of Claim A2.2 For any ∈ 0,1 , an increase in 	has a positive direct 
effect on the utility of Expert 1: for given effort levels on the part of Expert 1	and 
the , an increase in  raises the probability that a trade will occur. In addition 
to this direct effect, an increase in  affects Expert 1 because the optimal efforts 
change. I show that this second effect reinforces the direct effect. 

We start from ∗, and the associated equilibrium 
∗ , ∗ , ∗ ∈ 0,1  (for a given ). I compare Expert 1's 

expected utility in this equilibrium to that in an equilibrium where 
	 , ∗. The equilibrium associated with , 

∗ , ∗ , ∗ ∈ 0,1 , satisfies ∗ ∗  and 
∗ ∗ . When ∗, for a given level of effort on the part of 

Expert 1, his expected utility is increasing with the attention that he gets from the 
DM. Thus, even if Expert 1's effort were held fixed at ∗  when	 , 
Expert 1 would be strictly better off getting attention ∗  from the receiver 
than getting attention ∗ ∗ . Clearly, then, Expert 1 is strictly better 
off in the equilibrium associated with  – where the DM devotes attention 
∗  to him and he plays his best reply, ∗  – than in the equilibrium 

associated with . Hence, the expected utility of Expert 1 in equilibrium 
increases with  for ∈ 0, ∗ . Because all best reply functions and utility 
functions are continuous, the expected utility increases continuously. 

When ∗, his expected utility is decreasing with the attention that he 
gets from the DM. Sender 1's effort is fixed at zero when ∗; and the DM's 
attention ∗  is decreasing with . Thus, as  increases, Expert 1's 
expected utility increases because he gets less (undesirable) attention from the 
receiver. Because all best reply functions and utility functions are continuous, the 
expected utility decreases continuously.  

At ∗, Expert 1's effort cost drops discontinuously (to zero); moreover, the 
attention he receives drops discontinuously as the DM's decision rule changes 
from an opt-in to an opt-out rule. Both of these changes raise Expert 1's expected 
utility discontinuously. 

Claim A2.3 When Expert 2 wants the DM's attention ∗), Expert 2's 
expected utility is a strictly decreasing function of the attention given to the 
other expert, ∗ . 

Proof of Claim A2.3 This follows immediately from the facts that (i)  



is increasing in ∗  for ∗, and (ii) ∗ 1 ∗ . Here, (i) 
follows from Claims 1 and 2, and (ii) is the DM's budget constraint. 

Claim A2.4 When Expert 2 does not want the DM's attention ( ∗), 
Expert 2's expected utility is a strictly increasing function of the attention 
given to the other expert, ∗ . 

Proof of Claim A2.4 This follows immediately from the facts that (i)  
is decreasing in ∗  for ∗, and (ii) ∗ 1 ∗ . Here, (i) 
follows from Claims 1 and 2, and (ii) is the DM's budget constraint. 

B.3 Proof of Corollary 1 

This follows from Claims 1, 3, and 4 of the proof of Proposition 1. 

B.4 Proof of Proposition 2 

I first establish a preliminary result: 

Lemma (Symmetric information outcome). Assume that the  faces a 
cognitive constraint such that there exists a lower bound on the amount of (non-
zero) attention that she can give to any one sender; ∈ 0 ∪ , 1  for all . 
Denote by  the highest number of senders that the DM can split her attention 
between if she splits her attention equally among them, given the cognitive 
constraint . Assume that there are  high-quality types ) and  low-
quality types ), with ≪  and ∗. Under 
symmetric information, there is an (essentially unique) equilibrium in which the 

 communicates with exactly  high-quality types. 

I establish this Lemma in three steps. 

Claim A4.1 Assume that there are 2 identical experts with α α∗. 
Then, there exists a unique equilibrium of this game, in which ∗ . 

Proof of Claim A4.1 The problem of , ∈ 1,2,… ,  is characterized in the 
proof of Lemma 1, and 's unique best reply function is given by ∗ ∈ 0,1 . 
By symmetry, ∗ ⋅ ⋯ ∗ ⋅ ≡ ∗ ⋅ . The problem of the 	is given by 

 

max
, ,…, 	∈ ,

x , 	 	. . . 	 	, 1

	 	

	 	

	 	 



 

For given (conjectured) , … , ̂ , her first-order conditions yield 

,
⋯

̂ , ̂ 	, 1 ∑ 	 	

1	 	∑ 	 	 	
. 

 

 

Substituting the experts’ best reply functions into this condition yields 

∗ ,
⋯

∗ 1 ∑ 	, 1 ∑

1 ∑
. 13  

Clearly, ∗ ∗ ∗ ⋯ ∗ ≡ ∗satisfies (13). Because the  exhausts her 
attention constraint in any equilibrium, there exists a unique symmetric equilibrium 

of this game, given by ∗, ∗ , ∗ , where ∗  is a vector 

∗, … , ∗  such that ∗ ∗  for all . 

There exists no asymmetric interior equilibrium (where ∗ 0 for all  and ∗

∗ for some ,  such that ). To see this, define ≡ ∗ , . By the 
proof of Lemma 1,  is strictly increasing in . Hence, if ∗ ∗ for some ,  
such that , (13) must be violated.  

There exists no equilibrium such that ∗ 0 for some . This follows directly 

from (i) for all ∈ 0,1 : , 0 for all ∈ 0,1 , (ii) 
, → 0 as → 1, 

and (iii) 
,

→ as → 0. 

Thus, the symmetric equilibrium is the unique equilibrium of this game. 

Claim A4.2 Assume that the  faces a cognitive constraint such that there 
exists a lower bound on the amount of (non-zero) attention that she can give 
to any one sender; ∈ 0 ∪ , 1  for all . Then, there exists a unique 

equilibrium of this game, in which ∗ , where  is the highest 

number of senders that the  can split her attention between, given the 
cognitive constraint . 

Proof of Claim A4.2 In the unconstrained optimum derived in the proof of 

Claim A4.1, as  increases, ∗ ≡ ∗  decreases monotonically. 

Thus, there exists some integer such that ∗ ∗



1 . By the proof of Claim A4.1, the  strictly prefers to communicate 
with  senders over communicating with strictly fewer senders. Because 
the  exhausts her attention constraint in any optimum, there exists a 

unique symmetric equilibrium of this game, given by ∗, ∗ , ∗ , 

where ∗  is a vector ∗,… , ∗  such that ∗ ∗  for all . This 

implies that the  fares worse in an equilibrium where less than  high 
type experts enter than in an equilibrium where  (or more) high-quality 
types enter. 

Claim A4.3 Assume that the 	faces a cognitive constraint  and that 
there are  high-quality types α α  and  low-quality types α α , 
with ≪ . Under symmetric information, the  
communicates with  high-quality types. 

Proof of Claim A4.3 Because α α, and because the 's expected utility 
from communication with an expert is increasing with the expert's type ), 
the 's expected utility from devoting attention 1/  to a high-
quality type is higher than her expected utility from devoting the same 
amount of attention to a low-quality type. Because , the  only 
communicates with high types. By the proof of Claim A4.2, the  
communicates with exactly 	high-quality types. 

Having established the Lemma, the proof now proceeds in four steps. 

Claim A4.4 When ∈ , , there exists a fully revealing equilibrium 

where only high-quality experts approach the DM. She obtains the same 
expected decision payoff as under perfect information. 

Proof of Claim A4.4 We derive conditions under which equilibria with cue 
communication exist. We postulate an equilibrium such that  high-quality 
types send cues to the , where , zero low-quality types send 
a cue to the , and the  devotes ∗ 1/  to	  experts chosen randomly 
among the  high-quality types who send a cue, where ≡ , and zero 
attention to all other experts. In such an equilibrium, a low-quality type 
refrains from sending a cue iff 

1
1

∗ 1
,
1 ∗ 1

. 14  

 



Exactly P high-quality types send a cue iff 

 

 

1
1

∗ 1
,
1 ∗ 1

																																 

																																														
1 ∗ 1

,
1 ∗ 1
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The fact that ∗  is a high-quality type’s best reply implies that 

 

∗ 1
,
1 ∗ 1 ∗ 1

,
1 ∗ 1

. 16  

 

By (16), (15) implies (14). Hence, if (15) is satisfied, the postulated 
equilibrium is incentive compatible for all experts. By (16), there exists a 
nonempty range of  such that (15) is satisfied. 

Because only high-quality types send cues, an expert’s cue 
communication decision reveals his type, so the  need not assimilate the 
cues. By the proof of Claim A4.3, the ’s preferred attention allocation 
is to communicate with t high- quality types. She is indifferent between the 
P high-quality types who send cues to her. Thus, randomizing between all 
experts who send her a cue, and devoting zero attention to all experts who 
do not, is incentive compatible for the . Hence, the postulated FRE exists 
if (15) holds. 

The FRE is such that all  high-quality types send cues in equilibrium 
(but, if there were 	 	1 high-quality types, the last one would not enter) 
when  satisfies 

 

1
1

∗ 1
,
1 ∗ 1

																																	 

 



																																														
1 ∗ 1

,
1 ∗ 1

17  

The left-hand side of (17) gives the expected utility from entry in the 
presence of  high-quality types for a (hypothetical) 1 th high-
quality type. The expected utility from entry in the presence of  high-
quality types is strictly smaller for a low-quality type. Thus, denoting this 
expected utility by , we have  

1
1

∗ 1
,
1 ∗ 1

. 

There exists a FRE such that all  high-quality types send cues in 
equilibrium (but no low-quality type) when  satisfies: 

1 ∗ 1
,
1 ∗ 1

. 18  

The FRE is such that exactly  high-quality types send cues in equilibrium 
(but no low-quality type) when  satisfies 

1
1

∗ 1
,
1 ∗ 1

																																			 

																																										 ∗ 1
,
1 ∗ 1

 

Thus, the FRE in which 	or more high-quality types (but no low-quality 

type) send cues to the 	exist iff  and α ∗ ,

∗ ≡ . The 's expected utility, in any of these equilibria, is 

given by ∗ ∗ , , which is the same decision payoff as she 

obtains in the perfect information case. 

Claim A4.5 When  falls below , low-quality experts also approach the 

receiver. She must either accept a lower expected decision payoff or 
intensify her search for high-quality senders. In either case, her expected 

utility is strictly lower than when ∈ , . 

Proof of Claim A4.5 We first show that when  falls below , there exist 

only equilibria that make the  strictly worse off than when ∈ , .  

When  falls below , (18) is violated. Thus, in any equilibrium with 



cue communication, at least one low-quality type sends a cue (and all high-
quality types). In such an equilibrium, the  either (i) opens zero cues but 
randomly chooses to communicate with  experts, or (ii) opens at least one 
cue. We show that both of these may be consistent with equilibrium play. 
We show this in the context of an equilibrium in which exactly one low-
quality type sends a cue. 

If the  plays strategy (i), the equilibrium must satisfy 

 

2
∗ 1

,
1 ∗ 1

q 	

																																						
1

∗ 1
,
1 ∗ 1

 

 

where we use the fact that the  will devote the same amount of attention 
to every expert with whom she communicates (as the experts’ types are their 
private information). We denote by U N ,1, t  the ’s ex ante utility 
in this randomization equilibrium where  high-quality types and one low-
quality type send cues to the  who chooses  experts among them 
randomly. We have 

 

, 1, , 1, ∗ 1
,
1

1 ∗ 1
,
1

 

 

																																				 α 1 , 1, ∗ 1
,
1

 

 

where , 1, is the probability that the (only) low-quality type is among 
the 	experts that the 	randomly picks from the 1 available experts. 

Because , 1, , , 1, ∗ ∗ , .  

If the  instead plays strategy (ii), and if she commits to opening 
exactly one cue, her expected utility satisfies 

 

, 1, ∗ ,   



																								
1

∗ 1
,
1

1,1, 1  

 

With probability , the  opens the cue sent by the (only) low-quality 

type, in which case she communicates with the  high-quality types and gets 

her preferred attention allocation. With probability , the cue was sent 

by a high-quality type, so the  communicates with this expert and 
randomly picks 1  others. In this case, her ex ante expected decision 

utility is greater than or equal to ∗ , 1,1,

1 (where the inequality is strict if the  chooses to treat the identified 
high-quality type preferentially, at the expense of dropping one expert of 
unknown type). Because the  does not obtain her preferred attention 
allocation with probability one, , 1 ∗   

We now show that both (i) and (ii) may, depending on the parameter 
values, be preferred by the :  

In expectation, choosing  experts at random among 1 is strictly 
worse than observing one high-quality type and choosing the other 1  
at random, i.e., 

 
1
1

∗ 1
,
1

1
∗ 1

,
1

1,1, 1  
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Equation (19) implies that there exists a non-empty range of  such that 
, 1, , 1, , given by 

1
1

∗ 1
,
1

1
∗ 1

,
1

1,1, 1  

																																																											 , 1, . 20  

We now note that when the  prefers a strategy in which she commits to 



opening exactly one cue to a strategy in which she randomizes, the  also 
prefers a strategy in which she opens at least one cue to randomization. 
Thus, whenever (20) is satisfied, the  opens at least one cue. Because 
the left-hand side of (20) is finite, the reverse is true for large enough , 
i.e., , 1, , 1, . 

Claim A4.6 When → 0, the number of low-quality experts who approach 
the 	becomes so large that she ceases to screen experts for quality. The 

's expected decision payoff is strictly smaller than that obtained in any 
equilibrium where cue communication takes place. 

Proof of Claim A4.6 Suppose that   is infinite. As → 0, the number 
of low-quality types that wish to send a cue to the , , approaches 

infinity, which implies that → 1 and → 0. Thus, 

, , → xα ∗ , . Because , , →
∗ , , the  strictly prefers not to open any cue in the limit. 

In an equilibrium in which she randomizes, she is worse off, the larger the 
share of low-quality experts. Thus, she is clearly worse off than in any 
equilibrium where she reads cues. 

Claim A4.7 The decrease in the ’s expected utility is monotonic for 
. 

Proof of Claim A4.7 When the  randomly chooses experts, this follows 

directly from the fact that  and  change monotonically with the 

number of entering low-quality types, . So long as the  opens cues, the 

value of opening one cue is decreasing with , which is monotonically 

increasing with . 

 

B.5 Proof of Proposition 3 

Claim A5.1 If the  assimilates one cue, she continues to assimilate cues 
until she identifies the relevant topic. 

Proof of Claim A5.1 Suppose that the  has launched  topics. Consider 
the first cue that the  assimilates. She incurs the cost . With 
probability 1/ , she finds the relevant topic, and devotes all of her attention 
to this topic. With probability 1 /  she does not find the relevant 



topic. In this situation, the  always assimilates a second cue: the cost of 
assimilation is still ; however, the probability that she identifies the 
relevant topic is 1/ 1 1/ . Hence, if the  assimilated the first 
cue, she assimilates a second cue in the event that the first topic is irrelevant. 
Repeating this argument yields that, if she assimilates one cue, she 
continues to assimilate cues until she finds the relevant topic. 

Claim A5.2 There exists a number of cues (topics) ∗ such that, if the  obtains 
more than ∗ topics, then she assimilates no cue. Instead, she randomly chooses 
 topics that she divides her attention between (equally) in the deliberation stage. 

Proof of Claim A5.2 Consider the 's expected utility if she assimilates cues. 
If the first cue that she assimilates is the relevant one, which happens with 
probability 1/ , then her expected payoff is π , where 
1 α 0,1 1 α . That is, her expected payoff is the expected payoff 

from the action, adjusted for the fact that she may find out, through her 
information acquisition on the relevant topic, that the product quality is low (and 
opt out). When she devotes all of her attention to this topic, and the expert devotes 
zero effort, the probability that she obtains such information is given by 0,1  
in the event that the product quality indeed is low, which happens with 
probability 1 α . If the first cue that she assimilates is not the relevant one, 
which happens with probability 1 / , then she assimilates a second cue.  

If the second cue that she assimilates is the relevant one, which happens with 
probability 1/ 1 , then her expected payoff is π 2 . If the second cue 
is not the relevant one, then she continues. Repeating this argument yields that 
her expected payoff from assimilating cues (until she finds the relevant one) is 
given by 

 

1 1 1
1

2
1 2

1
1
2

3

 

…
1 1

1 2 ⋯  

																																											
1
2

1
2

. 



Because  increases in  without bond, there exists a ∗such that 

1 ∗

2
0

1 ∗ 1
2

. 

 

If the  does not assimilate any cue, but instead randomly chooses  out of the  
cues available to her, her expected utility is given by π 1 α

0, 1 α , since she chooses /  out of the topics available, and hence 

picks the relevant topic with probability / . Among the  topics that she randomly 
chooses, she devotes 1/  of her attention to each of them. Because 
1 α 0, we have that π 0. Clearly, the  strictly prefers to randomize 

over assimilating cues if the expert makes more than ∗ topics available. The  
prefers to randomize when her expected payoff from randomization exceeds her 
expected payoff from opening cues, i.e., when 

 

1 0,
1

1

1 0,1 1
1
2

. 

 

We know that this holds when ∗. We denote the smallest number of topics 
such that the  prefers to randomize by ∗∗.	Clearly, ∗∗ ∗. 

Claim A5.3 The expert either launches only one topic or launches at least ∗∗ 
topics. If  is small, he launches at least ∗∗ topics. 

Proof of Claim A5.3 If the expert launches only one topic (the relevant one), then 
the  devotes all of her attention to this topic. Thus, she opts out with probability 
0,1 1 α .  

If he launches more than one but fewer than ∗∗ topics, the  assimilates cues 
until she finds the relevant topic. Then, she devotes all of her attention to this topic. 
Hence, she opts out with the same probability; however, the expert incurred a 
higher cost of making the (additional) topics available. Thus, the expert strictly 
prefers launching one topic to launching strictly more than one but fewer than ∗∗, 
topics. 

If he launches at least ∗∗ topics, the 	randomly chooses 	out of the 
∗∗topics, and devotes attention 1/ 	to each of the selected topics. In this case, she 

opts out with probability 0, 1 α 0,1 1 α . Clearly, if the cost of 

launching a topic, , is small enough, the expert strictly prefers to launch at least 
∗∗ topics. 

 



Claim A5.4 When 0, the mandate to disclose the relevant topic has no effect 
on the ’s expected utility; she does not process the relevant information at all. 

Proof of Claim A5.4 When → ∞, the number  of topics launched goes to 

∞, and the probability that the  opts out goes to 
→

0, 1 0. 

Hence, the mandate to disclose the relevant topic has no effect on the 's 
expected utility; the expected utility is simply given by 1 α , which is 
her expected utility in the absence of any mandate. 

 


