Supplemental Information: Engineering Mesoporous Silica for Superior Optical and Thermal Properties
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Ambient drying
Ambient drying of silica gels is one method for obtaining mesoporous silica materials with small pore size and narrow pore size distribution.1 In contrast to aerogels, which require supercritical (typically CO2) drying techniques, and xerogels, which are dried in polar solvents, ambigel synthesis makes use of high vapor pressure and nonpolar drying solvents that can minimize the surface tension on the silica network. Limiting capillary forces and pore collapse in ambigels leads to a smaller pore size than in aerogels and a larger fraction of porosity than in xerogels.2–4 The reason that the reduced surface tension produces higher porosity can be understood by evaluating the Young-Laplace equation expressing the capillary pressure Pc exerted by a solvent on the walls of a pore with diameter d as
	,	(Eqn. S1)
where LV is the surface tension of the solvent/air interface and  is the contact angle between the solvent and the pore wall.5 Thus, an organic solvent with low surface tension results in reduced capillary forces and minimal pore collapse during drying.6,7 Another consideration in creating a high porosity, monolithic, ambiently dried gel is careful regard of the sol components such as alkoxide precursors, solvent ratios, catalysts, and additives.8 The use of chemical additives to the sol, such as formamide, has been shown to produce a relatively uniform pore size distribution and to enable ambient drying without cracking.1,9–11





Thermogravimetric analysis and Fourier transform infrared spectroscopy 
TGA data for pre-calcined ambigel samples TEOS1 and TEOS1:MTES as well as non-calcined TEOS1:MTES:0.5TMCS are shown in Figure S1. The methyl content measured by TGA is summarized in Table 2. Although TEOS1:MTES was pre-calcined to remove organics, some methyl groups remain on the surface and are only removed by calcination above 500°C, as indicated by TGA and FTIR. Analysis of the FTIR spectra is summarized in Table S1.
[image: ]
Figure S1. TGA of TEOS1, TEOS1:MTES pre-calcined ambigel samples and non-calcined TEOS1:MTES:0.5TMCS ambigel sample at a ramp rate of 10 C min-1 to 700 C for TEOS1 and 1000C for TEOS1:MTES and TEOS1:MTES:0.5TMCS. The ~ 5 % weight loss below 150 C in TEOS1 is due to the evaporation of physiosorbed water and highlights the hydrophilicity of the non-surface modified gels compared to the TEOS1:MTES and TEOS1:MTES:0.5TMCS gels with surface methyl groups. The weight loss above 300 C in TEOS1:MTES and TEOS1:MTES:0.5TMCS  is attributed to the removal of remaining surface methyl groups in TEOS1:MTES and TEOS1:MTES:0.5TMCS. The weight loss above 200 C in TEOS1 can be attributed to induced crosslinking and subsequent dehydration.



Table S1. Summary of observed FTIR peaks in cm-1 and attributed structural unit vibrations for TEOS1, TEOS1:MTES and TEOS1:MTES:0.5TMCS silica ambigel samples.





	TEOS1
	TEOS1:MTES
	TEOS1:MTES: 0.5TMCS
	Structural unit and type of vibration
	Ref.

	460
	450
	450
	O-Si-O deformation
	12,13

	562
	575
	572
	Si-O stretching
	13

	800
	795
	776
	Si-O symmetric stretching
	13

	
	
	845
	Si-C stretching
	14

	
	955
	945
	Si-O in-plane stretching
	12,14

	1088
	1079
	1070
	Si-O-Si antisymmetric stretching
	12,13

	1188
	1160
	1151
	Si-O-Si antisymmetric stretching
	5,12,14 

	
	1277
	1275
	C-H symmetric bending
	13

	
	
	1384
	C-H symmetric bending
	12,14

	1636
	1634
	1633
	H-O-H deformation
	12

	
	
	2857
	C-H symmetric stretching vibration
	12

	
	
	2928
	C-H  antisymmetric stretching vibration
	12

	
	
	2971
	C-H  symmetric stretching vibration
	12,14

	3450
	
	3450
	SiO-H and  H-O-H deformation
	13





Color Rendering Index
The color rendering index (CRI) was used to evaluate the quality of color appearances when viewed through the silica ambigel and aerogel slabs.15,16 A value close to 100 indicates that the material can accurately depict a variety of colors that are close to those seen under daylight and can relay a constant spectral transmittance. The CRI for good quality window glass is higher than 80 while an excellent quality window has a CRI > 90. The color rendering index of the TEOS1, TEOS1:MTES, and TEOS1:MTES:0.5TMCS were systematically above 99%, respectively, confirming that color images viewed through the 0.5–0.7 mm thick ambigels were excellent. Increasing the thickness of TEOS1:MTES and TEOS2:MTES gels to 2.02 mm and 2.5 mm, respectively, gives transmittance values greater than 91% and haze values less than 4.5% across the entire visible spectrum (denoted TEOS1:MTES:THK ambigel samples in Table 1). Additionally, the TEOS1:MTES:THK ambigel sample had measured CRI of > 99% confirming the excellent color rendering of images seen through gels with small pores even when the thickness is substantially increased. The excellent optical clarity of gels can be seen qualitatively in the photographs of Figure 1.








U-Value reduction of a single pane window with ambigel coating
In order to gain perspective on the practical effects of ambigels in window applications, the U-values of a single pane window with a low-emissivity (low-e) coating and a single pane retrofitted with a 3 mm thick ambigel slab sandwiched between a 3 mm thick glass pane and the low-e coating were predicted (Figure S2).17 The U-value of a multilayer system is the inverse of its thermal resistance and a lower U-value indicates better insulation properties.17 Using the Window 7 software provided by LBNL18 and assuming NFRC100-2010 environmental conditions19, a 6 mm thick single pane window (pane  = 1 W m-1K-1) has a center-of-glass U-value of 0.608 Btu h-1f-2°F-1 as shown in Figure S2. Replacing 3.0 mm of the single pane window with a 3.0 mm thick silica ambigel thermal barrier (TB = 0.04 W m-1K-1) reduces the center-of-glass U-value by over 20% to 0.472 Btu h-1f-2°F-1. 
(a)
(b)
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Figure S2. Schematic of windows used for calculating the U-value of (a) a classic single-pane window and (b) a single-pane window with 3.0 mm thick ambigel and low-e coating.

 

Supplemental Experimental Procedure

Structural Characterization: Nitrogen adsorption–desorption isotherms were measured at –196 C on an accelerated surface area and porosity analyzers ASAP2020 Plus and ASAP2010 manufactured by Micromeritics Instruments Corp. [Norcross, GA]. Specific surface area was calculated using the Brunauer–Emmett–Teller method (BET) based on nitrogen adsorption data in the relative pressure range 0.05–0.2 and assuming the cross-section area of a nitrogen molecule to be 0.162 nm2.20,21 Total pore volume was calculated by converting the amount of nitrogen adsorbed at a relative pressure 0.98 to the volume of liquid nitrogen assuming the density conversion factor of 0.0015468.  Pore width was estimated from the position of a peak maximum in the pore size distribution determined using the Kruk–Jaroniec–Sayari (KJS) method using (i) the adsorption branch of nitrogen isotherm, (ii) the modified Kelvin equation calibrated for cylindrical pores up to 19 nm in diameter, and (iii) the statistical film thickness curve derived from the nitrogen adsorption isotherm measured for macroporous silica LiChrospher Si-1000. 22–24 We define αs as the ratio of the amount of nitrogen adsorbed on a reference material surface at a given relative pressure to the amount of nitrogen adsorbed at a reference material surface at the relative pressure p/p0 = 0.4. . Micropore volume was calculated using the αs method in the reduced adsorption range (a) αs = 0.4–0.8 for TEOS1, TEOS2, TEOS5, and TEOS2:MTES,samples, (b) αs = 0.6–1.0 for TEOS3 and TEOS4 samples, or (c) αs = 0.2–0.5 for the TEOS1:MTES sample) and using macroporous silica LiChrospher Si-1000 as the reference.21 Mesopore volume was calculated as a difference between the total pore volume and the micropore volume. Transmission electron microscopy (TEM) images were obtained on a FEI Technai G2 T20 [Thermo Fisher Scientific]. Ambigel fractal dimensions D were calculated from the adsorption isotherms using the Frenkel-Halsey-Hill method as 25
		 	(Eqn. S2)
where n is the quantity of N2 gas adsorbed in cm3 STP g-1, and P is the pressure and Po is the saturation vapor pressure.  
Optical Measurements: The normal-hemispherical transmittance  and the diffuse transmittance   were measured with a double-beam UV-Vis spectrometer (3101-PC Shimadzu, Kyoto, Japan) and an integrating sphere with an internal diameter of 60 mm (ISR 3100 Shimadzu, Kyoto, Japan). The normal-hemispherical transmitted signal  was measured and corrected for the reference signal   and the dark signal  according to 
	 	(Eqn. S3)
The dark signal  was collected when no light entered the integrating sphere while the reference signal  was measured in the same configuration as for   but without a sample present. 
The diffuse transmitted signal  represents the fraction of light that is scattered and transmitted by the sample. It was measured by removing the highly reflecting plate facing the sample in the integrating sphere so that the unscattered light left the integrating sphere. Finally, the visible transmittance is defined as the spectral transmittance of the total fenestration system weighted by the photopic response of the eye according to26
	 	(Eqn. S4)
where  is the photopic spectral luminous efficiency function of the human eye, i.e., the function representing the wavelength-dependent sensitivity of the eye during daytime.27

The spectral haze  in the visible was computed according to ASTM D1003-11 as
		(Eqn. S5)
where   is the signal measured in the same configuration as for  but without a sample present. Here also, one can define the visible haze
	 	(Eqn. S6)
The color rendering index  measures the color difference before and after transmission through the sample for eight different colors. The source of transmitted light is the illuminant , which is a CIE (International Commission on Illumination) standard illuminant reproducing average midday light. The color rendering index was expressed as28
		(Eqn. S7)
where  is the special color rendering index of the ith test color. For each test color, the special color rendering index  was expressed as28
		(Eqn. S8)
where  is the geometrical distance in the CIE 1964 uniform chromaticity space between the color perceived without the glass and with the glass. It was expressed according to the trichromatic coordinates in the CIE 1964 space domain namely , , and , as28
		(Eqn. S9)
The trichromatic coordinates , , and  of each test color were calculated from the normal-hemispherical transmittance  of the glass in the visible range taken from EN 410:2011 for the reference illuminant   without transmission through the sample.28 
	Thermal Measurements: The time-domain thermoreflectance (TDTR) method is a reliable method that has been used to accurately measure thermal conductivity of a wide range of materials, including amorphous materials, porous structures, and aerogels.	29,30 In the present study, the samples were first coated with a thin layer of Al (80 nm) to convert the photon energy of the pump laser pulse into thermal energy. Prior to TDTR measurements, the samples were heated to 160 ºC for 1 hour at a pressure < 1 Pa and cooled to room temperature in a cryostat to fully dry the sample. The pump beam consisted of laser pulses at wavelength 400 nm and of width of 100 fs  delivered onto the Al coating for generating heat. The probe beam consisted of laser pulses at 800 nm with variable pulse width to determine the temperature changes. After the instantaneous temperature rise caused by the pump beam, the temperature decay was recorded by the probe beam by controlling the delay time between the pump and probe beams from 0 ps to 6000 ps and utilizing the linear relationship between reflectivity and temperature of the Al film. The full transient decay curve was fitted with a multilayer heat conduction model to obtain the thermal conductivity of the sample.21 More details about the working principles, experimental setup and successful applications for various materials including silica aerogel can be found in previous studies.31 To avoid biased characterization which could be due to inhomogeneity  due to the nanoscale porous structure of the ambigel monoliths, a laser spot size of 20 m in diameter was used to cover a surface area encompassing a large number of nanoscale pores. For each sample, the thermal conductivity was averaged from ten different measurements on different spots for each sample. The reported thermal conductivity was the average for 3 samples for the TEOS1—TEOS5 ambigel monoliths and for 2 samples for the TEOS1:MTES and TEOS2:MTES ambigel monoliths. The error bars accounted for uncertainties in individual measurements as well as from inter-sample variability. The effective specific heat Cp was measured directly through differential scanning calorimetry (DSC) of ambigel samples at room temperature and after heating to 150 ºC and cooling back to room temperature to remove water, as described in previous work.32
	The effective thermal conductivity keff at room temperature of the ambigel monoliths was also measured using a guarded hot plate apparatus based on ASTM C177-13 standard in a single-sided mode. The apparatus in double-sided mode was described in detail in Ref.33 and need not be repeated. In brief, an ambigel monolith with thickness t was sandwiched between a hot plate and a cold plate. The whole stack was placed between two thermally insulating blocks and wrapped in multiple layers of fiberglass insulation to minimize heat losses. The cold plate was maintained at constant temperature by a liquid coolant provided by a chiller. It also featured an embedded thermocouple measuring the plate temperature Tc. The hot plate was composed of two concentric sections: an inner metered section with area Ah,m and an outer guard section with area Ah,g. The metered heater was used for thermal conductivity measurement while the guard heater was used to minimize lateral heat losses that could decrease the accuracy of the measurements. Both metered and guard heaters had embedded (i) thermocouples that measured their respective temperatures Th,m and Th,g and (ii) resistive wires with resistance Rh,m and Rh,g, respectively. The resistive wires were connected to two separate digital power supplies to independently control their temperatures Th,m and Th,g by Joule heating using currents Ih,m and Ih,g supplied to the metered and guarded sections, respectively. The current flowing through the resistive wires heated the hot plate due to Joule heating. The generated heat imposed a heat transfer rate between the hot and cold plates such that, under steady state, it equaled the heat generation rate, i.e.,  and . The temperatures Tc and Th,m were adjusted to maintain the average temperature of the measurement at room temperature. The effective thermal conductivity was calculated using Fourier's law expressed as . The setup was described in detail in previous work, but used in double-sided mode instead of the single-sided mode used in the present study.33
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