
1

Tutorial 1: The base model

This tutorial is based on the Neutral Model of Stone Raw Material Procurement developed by

Jeffrey Brantingham. Brantingham’s (2003) highly influential article was the first application of

agent-based modeling to the topic of procurement, curation and spatial distribution of raw material

used for lithics production in prehistory. Brantingham sought to develop from first principles a

model of raw material curation, that is, a base model stripped of any behavioral assumptions that

could be then compared to the lithics assemblages found at archaeological sites. Essentially, he

asked how these assemblages would look if the processes leading to their creation were random

(Brantingham 2003: 490).

The main premise behind the model is to establish the pattern of assemblage variability under

neutral conditions of no behavioural biases (for example, without a preference for any particular

raw material type and no specific type of mobility). In the simulation, a single agent-forager follows

a random walk (see O’Sullivan and Perry 2013, ch 4) through a uniform landscape dotted with

raw material sources. The agent collects raw material indiscriminately whenever s/he comes

across a source. When a raw material source is encountered their toolkit is filled up until it contains

100 pieces and the agent continues their journey. At every step one piece is deposited on the

current grid cell. There is no specific foraging/movement strategy or any preference for a particular

type of raw material.

The outline of the simulated processes is given in Fig. 1. In

the setup phase a 500x500 cells world is seeded with 5000

unique raw material sources. Each raw material type is

present at only one cell and their distribution is random. In the

second phase the agent is initialised with an empty toolkit.

Once the setup phase is completed the time clock is started.

In each time step the agent either moves to one of the 8

neighbouring cells chosen at random or stays put. If the toolkit

is not empty, the agent drops one randomly chosen item. If

the cell the agent is on is a raw material source the agent

reprovisions the toolkit unless it is full. The cycle move-drop-

reprovision repeats until the simulation is stopped. The

richness of the toolkit (the number of unique raw materials) as

well as the variability of assemblages composed of items

dropped by the agent are recorded throughout the simulation.

In this tutorial we will try to replicate Brantingham’s model as

accurately as possible. It will take approximately two hours to

complete. It has been built and tested in NetLogo 6.0.1. For

installing instruction and more in-depth explanations see

Romanowska et al. 2019 Supplementary Information B.

Figure 1.0.1. Flowchart of the Neutral
Model. Adapted and simplified from
Brantingham 2003, fig. 5.

http://patternandprocess.org/the-model-zoo/chapter-4-models/

2

1.1 NetLogo Interface

The NetLogo interface (Fig. 2) consists of three tabs: Interface, Info and Code. Let’s look at them

in turn. The Interface window consists of: the View Panel for watching the simulation, a few

buttons along the top of the window with settings and the Command Center towards the bottom

of the window, which you can use to directly alter or inspect any element of the simulation.

Figure 1.2. The Netlogo Interface.

We are first going to change the size of our simulation window to accommodate a much larger

view. Click on the ‘Settings’ button in the top menu to adjust the view panel. First change the

‘Location of origin:’ to ‘Corner’ and choose ‘Bottom left’ from the drop down menu. We need a

much larger area than the default so replace the values in max-pxcor and max-pycor to 499 (the

coordinates of the first patch start at 0 0 so setting maximum x and y to 499 gives a 500x500

square). However, this means that if we keep the size of patches (grid squares) as large as it is

now the screen will be enormous. Change the ‘Patch size’ to 1.0 and hit ‘Apply’. You might have

noticed the two tick boxes ‘World wraps horizontally’ and ‘World wraps vertically’. If ticked they

provide continuity between the edges of the screen, i.e., if the agent moves right while standing

on the right-most patch it will appear on the left-most patch; this is known as a torus world as it

doesn’t have edges. Check that both tick boxes are ticked and hit ‘OK’. This will get you back to

the main “home” image. If you do not like the size of the view panel, right click anywhere on it,

choose ‘Select’ from the dropdown menu and drag one of the corners until the size is ok - note

that this only changes the size of the patches, their number (500 by 500) remains the same.

3

1.2 The setup and the go procedures

The backbone of almost all NetLogo simulations

are two procedures: ‘setup’ and ‘go’. The setup

procedure is used to initialise the simulation, i.e.,

to create the starting population of agents and to

their environment. The go procedure is the main

simulation loop where in each time step the

agents and the environment undergo a series of

actions.

Click on the ‘Add’ button and then click anywhere

on the white space. A dialogue box (Fig. 3) should

pop up. Write setup in the ‘Commands’ box and

click OK. Follow the same steps to create a

second button and write go in the ‘Commands’

box. This time also tick the ‘Forever’ box. This

means that this action will be repeated until the simulation ends.

You can see that the text on both buttons has instantly turned red, indicating an error - this is

because we have not yet defined what we mean by ‘setup’ and ‘go’ within the code. Let’s move

to the Code Tab to fix it. The Code Tab consists mostly of a white text box, the code box, and a

few buttons towards the top, which we will inspect in a moment. We will start with setting up the

two procedures. Type the following in the code box:

to setup

end

to go

end

The words to and end delimit all NetLogo procedures. If you now click on the ‘Procedures’ button

at the top of the screen, you will find that ‘setup’ and ‘go’ are already there. To the left is the

debugger button ‘Check’ - if you click on it, it will check if the basic syntax of the code is correct.

1.3 The setup procedure

Logo - the language of NetLogo - was developed to resemble a natural language as much as

possible, which means that it is very easy to understand the code. It was also developed with

educational goals in mind (read: teaching kids), which means that it is equally easy to write. We

will start with setting up the environment by asking each patch to set a number of variables: colour,

whether they are a raw material source patch or not and the list of dropped lithics it contains. In

addition, we will use the standard NetLogo functions that ensure that every time we hit the setup

button the remains of the previous runs are removed. All commands directed at turtles and

patches are initiated by the word ask and enclosed in square brackets [], here we will make use

Figure 1.3. The button window.

4

of them for the first time. Type inside the setup procedure (i.e., between to setup and end), so

that it looks like this:

to setup

clear-all

ask patches[

 set pcolor white

 set source? false

 set assemblage []

]

reset-ticks

end

In the first line we use the clear-all primitive to wipe clean any remnants of the previous runs.

Similarly the last line of the setup procedure is always dedicated to resetting the time counter

using the reset-ticks primitive. Primitive is NetLogo jargon for an in-built function, that is

defined in the NetLogo library. Check out the NetLogo dictionary

(https://ccl.northwestern.edu/netlogo/docs/dictionary.html) for a full list of primitives. Coming back

to the code, we set up the environment by asking patches: 1) to set their color to white, 2) to set

their status as a source of raw material (we will ask them all to be a no-source for now), and 3) to

start a list in which we will record whether any artefacts have been dropped on this particular

patch during a run. The flow of the program is governed by brackets and it is very easy to lose

track of how many you have opened already. To avoid confusion once you open a bracket,

immediately close it and write the code inside. The indentation does not matter, but it makes the

code easier to read so we recommend using it. Hit the ‘Check’ button to see if there are any errors.

And there are. There always are. The message: ‘Nothing named SOURCE? has been defined.’

appeared at the top of the screen. Indeed, we tried to set the variable source? to false without

defining it first. Congratulations on seeing your first code error!

Variables are often used to describe the characteristics of agents, patches and the world. For

example, an agent can have age, gender, energy, cultural marker or any other feature relevant to

the model. These variables may change throughout the simulation run (e.g., age, energy) or

remain static (e.g., gender, cultural marker). There are two types of variables in NetLogo’s syntax:

1) global variables, used throughout the code, which must be listed at the beginning of the code

or defined using Interface items (we will come back to this), and 2) local variables, defined by

the let primitive, which are only valid within one procedure. We will see the use of local variables

later on, but the source? is a global one - it is a characteristic of all the patches. We will set its

value in the setup procedure and it will remain unchanged throughout the run. The same applies

https://ccl.northwestern.edu/netlogo/docs/dictionary.html
https://ccl.northwestern.edu/netlogo/docs/dictionary.html

5

to the assemblage list so we will also define it as a global variable. Type at the beginning of the

code (before “to setup”):

patches-own [source? assemblage]

And hit the ‘Check’ button; there should be no errors. If you now

go to the Interface tab and click on the ‘setup’ button, you will

see that the screen went white. Right click anywhere within the

view panel and choose ‘inspect patch ...’ from the drop down

menu. It will show you (Fig. 4) a list of patch variables, including

some of the built-in ones such as the x and y coordinates and

the patch color, but also the two we have defined ourselves:

source? and assemblage.

The white screen is not very exciting so let’s set up the patches

that are raw material sources. Because we do not want ALL the

patches to be a source we will use the n-of (number of)

primitive. Each raw material source needs to be unique so we

will give them a different id. Type inside the setup command,

after the first command block but before the reset-ticks.

let r 1

ask n-of 5000 patches [

set source? true

set material_type r

set r r + 1

set pcolor black

]

The first thing we do here is to define a local variable r and set it up as 1. We then ask 5000

patches 1) to change their source? status to true, 2) to set the material_type as the unique

id r, 3) to then add 1 to r so that the next patch gets the next (r+1) id, and finally 4) we will

change their colour to black to see where the raw material source patches are. Hit the ‘Check’

button. A familiar error message appears. But this time you know what to do! Add

material_type in the list of patch variables (patches-own) at the beginning of the code:

patches-own [source? assemblage material_type]

Move to the Interface tab and hit the ‘setup’ button. You can now inspect one of the source

patches by right clicking on it and choosing ‘Inspect Patch ...’ from the drop down menu. You will

see in the pop-up window that the value of source? is true.

We have now created the environment, but not the agents. We actually only need one but we

should give her/him quite a few variables such as the initial location and looks as well as a

maximum number of lithics s/he can carry and a list to keep track of them. Type after the patches

setup procedures but before reset-ticks:

Figure 4 Inspect
patch window.

Figure 1.4. Inspect patch window.

6

 crt 1 [

 setxy random max-pxcor random max-pycor

 set color red

 set size 10

 set shape "person"

 set max_carry 100

 set toolkit []

]

crt stands for ‘create agents’, in our case, one agent. Inside the brackets we set their initial

position to a random patch (i.e., with x and y coordinates between 0 and the current maximum -

max-pxcor and max-pycor) and add a few variables: color (notice that color applies to agents

and pcolor to patches), size and shape. We also initiate a list of all the raw material types the

agent carries in its toolkit and set up how much s/he can carry at any one time. Just like source?

or assemblage the toolkit list and the max_carry variable are global variables (you can hit

‘Check’ if you want to see the error message). However, this time they apply to agents not patches

so we need to make an turtle-specific variables lists. Write the following line at the beginning of

the code:

turtles-own [toolkit max_carry]

Here, we finally drop the bombshell - in NetLogo jargon agents are called turtles. This is the

legacy of being originally developed as an educational tool for kids. It makes for a fun code

development and all NetLogo developers sooner or later learn to love their turtles.

If you now go to the Interface tab and hit ‘setup’ you should find a red human-shaped agent on

one of the patches (Fig. 5). If you keep on pressing the setup button you will see that each time

the simulation is reset, the agent and source patches are initialised at a different (random)

location.

7

1.4 The go procedure

With the setup complete let’s move on to the go procedure, i.e., the main body of the simulation

which will be repeated until you click on the ‘go’ button again. The first thing we want the agent to

do is to move around the landscape. We have established that in each time step the agent will

move to one patch in its Moore neighborhood (that is, to the S, N, E, W or SE, SW, NE, NW of

the current location) or stay put. You can put it in a more mathematical terms as: the agent has a

1 in 9 chance of staying where it is or moving to any one of the surrounding patches. In order to

code the agent’s movement, we start the command with the keyword ask turtles and enclose

a list of functions, e.g., the move-to primitive in brackets. Type the following inside the go

procedure:

to go

ask turtles [

if random 9 > 0 [move-to one-of neighbors]

]

tick

end

Figure 1.5. The initialized simulation.

8

Let’s look at the code a bit closer. We ask all turtles (in our case there is only one) that if a random

integer (whole number) between 0 and 8 is higher than 0 then the agent should perform the

functions that are inside the brackets: move-to one-of neighbors. If it’s 0 then nothing

happens - the agent stays put. move-to, one-of and neighbors are all NetLogo primitives

and we encourage you to check them in the NetLogo dictionary

(https://ccl.northwestern.edu/netlogo/docs/dictionary.html). We also added the tick primitive at

the end of the go procedure that moves the time counter by one. Go to the Interface tab and click

first on ‘setup’ and then on the ‘go’ button. You should see the red agent running around the world

like crazy. Use to speed slider at the top of the window to slow it down a bit. You should be able

to see that the agent moves by one patch as the time counter underneath the speed slider is

ticking forward. Click on the ‘go’ button to stop the simulation.

The next thing to do according to the flow diagram of the model (Fig. 1) is for the agent to drop

one item at each step whenever its toolbox is not empty. We will use an if-loop to check whether

there is anything to drop in the toolkit and then update both the assemblage of the patch and the

agent’s toolkit. Write the following code inside the go using another ‘ask turtles’ command

(after the final closing bracket of the movement function but before tick):

ask turtles[

 if length toolkit > 0 [

let i random length toolkit

ask patch-here [

 set assemblage fput (item i [toolkit] of myself)

assemblage

]

set toolkit remove-item i toolkit

]

]

Let’s go through the code line by line. Like in the previous code snippet we use the ‘if’ conditional

loop. This time we will only perform the functions enclosed by the first set of square brackets if

the length of the toolkit list is more than zero, i.e., the toolkit is not empty. If that is the case, we

choose at random an item with an index i from the toolbox. i is an index number between zero

and the number of items currently present in the toolkit (length toolkit) which denotes its

position in the list (as in: first, third, tenth etc.). In the next line we ask the patch on which the

agent stands (note the special primitive patch-here) to add the item (using the fput list

primitive) i of the toolkit of the turtle asking, referred to with the primitives of myself, to the

patch’s list of dropped items - assemblage. We then remove the same item from the agent’s

toolkit.

If you run the simulation and inspect the agent (click on the ‘go’ button to pause the simulation,

then right click on the agent and choose ‘inspect turtle 0’), you will notice that despite all the coding

we have just done the agent’s toolkit remains empty. That’s not what we want! But it is easy to

understand why. We have no code for picking up raw material! In short, the agent never got a

https://ccl.northwestern.edu/netlogo/docs/dictionary.html
https://ccl.northwestern.edu/netlogo/docs/dictionary.html

9

chance to pick anything up! This cycle of writing small modular code bits and then checking the

simulation (by just running it and by inspecting its elements) is the best way of writing code. If you

try to write everything at once, chances are there will be errors and it will be much harder to find

them.

We recognise patches which contain a raw material source by their variable source? set as

true. Whenever the agent comes across one of them we want it to restock the raw material. We

will again use an if-loop to check whether the patch is a ‘source patch’ and if so fill up the agent’s

toolkit until it is full (using the while loop). Type the following code to make a new ask turtles

command inside the go procedure (after dropping procedure but before tick):

ask turtles[

if [source?] of patch-here = true [

let raw_material [material_type] of patch-here

while [length toolkit < max_carry] [

set toolkit fput raw_material toolkit

]

]

]

In the first line we ascertain that the patch is indeed a source patch. If it is not, the block of code

enclosed in the square brackets will be ignored and the program will move to the next statement

(in this case: tick). Do you remember that each raw material source has a unique ID? We need

that ID so that we know what type of raw material is added to the toolkit. The let statement sets

up a local variable raw_material to the same value as the ID (material_type) of the patch

the agent is standing on (patch-here). The variable raw_material is local, meaning it is only

recognised inside the ask turtles brackets. If you try to use is anywhere else, our favourite

error message (‘Nothing named raw_material has been defined’) would pop up. In the next line a

‘while-loop’ adds the raw_material to the toolkit list until the maximum capacity of the agent

(max_carry) is reached. Note the difference between the if- and while-loops here. If the given

condition is fulfilled (e.g., the patch-here is a source or a randomly drawn number is higher than

zero) an if-loop will perform the actions defined inside its brackets once. A while-loop will keep on

repeating them until the given condition is reached (e.g., the toolkit length is equal to the maximum

capacity of the agent).

Go to the Interface tab and run the simulation. Inspect the turtle - if you keep the inspect window

open during the run you should be able to see how the toolkit changes every time the agent comes

across a raw material source patch.

It is a bit difficult to see the raw material toolkit in the small box, so let’s create a plot that will show

the changes in the frequencies of different raw material types present in the toolkit. Click on the

drop-down list next to the ‘Add’ button at the top of the Interface tab and choose ‘Plot’. Click

anywhere on the white area outside of the view panel. A new pop-up window will appear. Write

in the ‘Name’ box: ‘Toolkit richness’. The ‘Plot pens’ box is where we specify what should be

10

plotted. The default value of plot count turtles counts the number of agents and in many

cases is very useful but since we only have one agent it does not make much sense. Delete it

and type:

plot [length (remove-duplicates toolkit)] of turtle 0

Figure 1.6. The plot interface.

This will plot the size (length) of the toolkit list once all duplicates are removed, that is the

number of unique raw material sources present in the agent’s toolkit. Every turtle has an in-built

unique number assigned to it when it is created. Since we only have one agent, its number is

zero. We specify this (of turtle 0) because otherwise the plotting function would not know

which agent’s toolkit to plot. Run the simulation (slow it down). If you compare your plot with figure

7 in Brantingham’s paper (2003) you will notice that they strongly resemble each other.

11

Congratulations you have successfully replicated a famous model!

To finish off, we will slightly extend the neutral model. Brantingham notes that the dynamics of

the simulation will change if the maximum size of the toolkit that the agent can carry is altered.

We will set up a slider to help running a series of experiments that will test it. As mentioned before,

global variables can be defined at the beginning of the code in the variables lists (patches-own,

turtles-own). However, you can also define them in the Interface tab by using a slider, a

chooser or a box. Go to the interface and click on the drop-down list next to the ‘Add’ button and

choose ‘Slider’. Then click anywhere on the white field outside of the view panel. A pop-up window

will appear. Type max_carry in the ‘Global variable’ box at the very top. You can leave the rest

of the boxes unchanged and hit OK. You immediately get an error message saying that ‘There is

already a global variable called MAX_CARRY’.

Figure 1.8. The slider variable interface.

This is because we have already defined max_carry at the beginning of the code in the

turtles_own list. Now we have two sources of a variable called max_carry (the slider and

the turtles-own list) and NetLogo does not know which one to use. Simply delete max_carry

from the turtles_own list. It should look like this now:

turtles-own [toolkit]

Figure 1.7. The plots, Brantingham versus our model.

12

Also, go to the setup procedure and delete the line set max_carry 100 in the command used

to create the agent. If you forget to remove it from the setup procedure what will happen is

NetLogo will read from the slider the value of max_carry (say 80) and then start executing the

setup procedure, but when it comes across the line in which you set max_carry 100 it will

overwrite the value set on the slider (80) to the one in the code (100). This is a common error

because it does not produce an error message (since you have not done anything illegal

according to the NetLogo syntax). Hit the ‘Check’ button and there should be no more errors. You

can now use the slider to vary how much the agent can carry in each run. Although you can use

the slider during the run, it is discouraged as the results will not be replicable. Instead change the

value before each run and compare the output of the plot. Have you noticed how the peaks of the

toolkit richness are lower and less frequent if the max_carry is set to a lower number?

This is the end of Tutorial 1. In the next one (Davies et al. 2019), we will move our model into a

real landscape generated from GIS layers. Tutorial 3 (Crabtree et al. 2019) will focus on how to

better collect the simulation output (just looking at a plot is not the greatest method) and how to

automate running the experiments (so you don’t spend days moving sliders).

To cite this document:

Romanowska, I., S. Crabtree, B. Davies, and K. Harris. 2019. “Agent-based Modeling for

Archaeologists. A step-by-step guide for using agent-based modeling in archaeological research

(Part I of III).” Advances in Archaeological Practice 7 (2).

References cited

Brantingham, P. Jeffrey

2003 A Neutral Model of Stone Raw Material Procurement. American Antiquity 68(3): 487–509.

Crabtree, Stefani, Kathryn Harris, Benjamin Davies, Iza Romanowska
2019 “Outreach in Archaeology with Agent-based modeling. A step-by-step guide for using
agent-based modeling in archaeological research (Part III of III).” Advances in Archaeological
Practice 7 (2).

Davies, Benjamin, Iza Romanowska, Kathryn Harris, Stefani Crabtree
2019 “Combining Geographic Information Systems and Agent-Based Models in Archaeology:
A step-by-step guide for using agent-based modeling in archaeological research (Part II of III).”
Advances in Archaeological Practice 7 (2).

O’Sullivan, David, and George Perry

2013 Spatial Simulation: Exploring Pattern and Process. Wiley-Blackwell, Chichester.

13

; _________________ GLOBAL VARIABLES _________________

turtles-own [toolkit]

patches-own [source? assemblage material_type]

; _________________ TO SETUP _________________

to setup

 ;;; The setup procedure is run only once at the beginning of each experiment.

 clear-all ; remove any residuals of previous experiments

; _________________ 1. Environment Setup _________________

 ;;; setup patches

 ask patches[

 set pcolor white

 set source? false ; initially all cells are set as having no raw material

 set assemblage [] ; start a list of items that the agent dropped at this location

] ; (this would be an equivalent to an archaeological 'find spot')

 ;;; setup patches with raw material

 let r 1

 ask n-of 5000 patches [; 5000 random patches become raw material sources

 set source? true ; set the variable source? as true

 set material_type r ; each will have a different raw material type

 set r r + 1 ; marked as a number between 1 and 5000

 set pcolor black

]

 ; _________________ 2. Agent Setup _________________

 ;;; create the agent and place him on a random patch, set color, size and shape

 crt 1 [

 setxy random max-pxcor random max-pycor

 set color red

 set size 10

 set shape "person"

 set toolkit [] ; start a list of items that the agent carries

]

 reset-ticks ; reset the time counter

end ; end of the SETUP procedure

14

; _________________ TO GO _________________

to go

;;; agent procedure: 1. move to one of 4 neighbouring cells; 2. drop an item from the toolkit if not

empty 3. reprovision the toolkit if a raw material source patch is encountered

 ask turtles [

 ;_________________ 1. Move _________________

 if random 9 > 0 [; if a randomly drawn no between 0 - 9 is higher than 0

 move-to one-of neighbors ; move to any one of the 8 neighbouring patches

] ; otherwise (it is 0) don’t do anything

]

 ;_________________ 2. Drop a random item from the toolkit _________________

 ask turtles [

 if length toolkit > 0 [; if the toolkit is not empty

 let i random length toolkit ; determine which item (i) will be dropped

 ask patch-here [; add item i to the 'assemblage' of the patch

 set assemblage fput (item i [toolkit] of myself) assemblage

]

 set toolkit remove-item i toolkit ; remove the item (i) from the toolkit

]

]

 ;_________________ 3. Reprovision if on a source patch _________________

 ask turtles [

 if [source?] of patch-here = true [; if you come across a patch with raw material

 let raw_material [material_type] of patch-here ; determine the type of raw material

 while [length toolkit < max_carry] [; while you still have capacity to carry more...

 set toolkit fput raw_material toolkit ; keep on adding that raw material to your toolkit

]

]

]

 tick ; time + 1

end ; end of the GO procedure

