
SUPPLEMENTAL FILE 1: TUTORIAL - Combining Geographic Information Systems

and Agent-Based Models in Archaeology

This tutorial builds on that presented in Romanowska et al. (2019), and the model is based

on the work of Brantingham (2003). The simulation is built using NetLogo version 6.0.2

(Wilensky 1999). It is highly recommended that the previous tutorial be completed before

attempting this tutorial. Average completion time for this tutorial is two hours.

Setting up a NetLogo model

After downloading and installing NetLogo, open the program. The initial screen has three

tabs, the Interface, Info, and Code tabs. Imagining a NetLogo model to be like a computer,

the Interface tab is akin to the screen and keyboard, while the Code tab is similar to the

internal components of the machine. The Info tab can be used for model description and

documentation.

The NetLogo environment possesses several of the basic characteristics of GIS software, in

the sense that it keeps track of spatial data in a systematic way, and can be used to create

visualizations of spatial phenomena. NetLogo has a gridded “world” window that can be

manipulated by right-clicking on the world window in the NetLogo interface and selecting

“Edit”, allowing the user to set an origin point, maximum and minimum coordinates, patch

(cell) size, and whether or not the world “wraps” as a toroid (ring-shaped) or cylinder surface.

This should be considered carefully when adding data, as these will influence how data

(such as the resolution of raster cells) is translated to the NetLogo world. For this exercise,

the settings for the parameters in Table S1 should be changed from the defaults:

 Table S1: Model settings used in example model

NetLogo world parameter Value setting

Location of origin Center

max-pxcor 100

max-pycor 100

Patch size 2

Once this is completed, create two buttons: setup and go. Buttons can be creating by

clicking the + button and clicking anywhere on the white background of the Interface tab. In

each respective window, enter ‘setup’ and ‘go’ in the Commands pane, and tick the ‘Forever’

box in the ‘go’ button (Fig. S1). The ‘setup’ and go procedures are used to initialize the

model and iterate through its commands, respectively, and are a convention used in many

Netlogo models.

https://ccl.northwestern.edu/netlogo/6.0.2/

Figure S1: Creating NetLogo buttons for the ‘setup’ and ‘go’ procedures.

Since we have not yet defined these procedures, the text on these buttons will be red. This

will be done in the next section.

Adding GIS data

Support for GIS is available through an extension that comes pre-packaged with NetLogo,

requiring no configuration following installation of the core software. The NetLogo GIS

extension allows for standard GIS data formats (shapefiles and ASCII rasters) to be added

to and manipulated by a NetLogo model. The code and data used in this tutorial are

available from an online repository. Make sure that the .nlogo file is saved in the same folder

as the GIS data.

The first step toward using the GIS extension is to add the following code to the top of a

model’s Code tab to access the GIS extension:

extensions [gis]

In order for NetLogo to use GIS data, the data need to be imported into NetLogo. One way

to do this is to create a “global” variable (a variable that can be accessed by any other

component of the model) where the GIS data can be stored, and then import the data as that

variable, as in the following pseudocode:

globals [gis-shape gis-raster]

to setup

set gis-shape gis:load-dataset "myshapefiledata.shp"

set gis-raster gis:load-dataset "myrasterdata.asc"

end

In this tutorial, the datasets of interest are locations of quarry sites saved as a point shapefile

called “quarries.shp”, as well as a digital elevation model (DEM) saved in ASCII format

https://dx.doi.org/%2010.5281/zenodo.1482941

called “dem.asc”1. Save these in the same folder along with the current model. Next, create

two new global variables called quarries and elevation; these will be used to import and store

the data in NetLogo in this way:

globals [quarries elevation]

to setup

 clear-all

 reset-ticks

 set quarries gis:load-dataset "quarries.shp"

set elevation gis:load-dataset "dem.asc"

gis:set-world-envelope gis:envelope-of elevation

end

First, the global variables are declared. Next, a setup procedure is started with the clear-all

and reset-ticks commands used to reset the model and reset the timer, respectively. Next,

the gis:load-dataset command is used to store the shapefile data in the global variable

quarries, and the raster data in the variable elevation. Finally, the gis:set-world-envelope

sets the envelope, or maximum extent, of the NetLogo world to match that of the raster

dataset. This latter command is important when working with more than one GIS layer as it

limits the boundaries of the NetLogo world.

To quickly visualize the data, the following procedure can be used:

to show-data

gis:paint elevation 50

end

The gis:paint command is used to display raster data shaded from low (dark) to high (light)

at a given opacity, where by 0 is opaque and 255 is transparent.Now add the following line

at the end of the setup procedure:

show-data

Return to the interface and click the ‘setup’ button. The resulting image in the NetLogo world

window displays the raster data, shaded low (dark) to high (light) (Fig. S2). The localities of

the quarries can also be added by updating the show-data procedure:

to show-data

 gis:paint elevation 50

 gis:set-drawing-color red

 gis:draw quarries 3

end

1 The “dem.asc” dataset used in this example is an ASCII raster extracted from tile n34w119 of the
USGS National Elevation Dataset, centered on Santa Catalina Island, California. The “quarries.shp”
dataset is a shapefile of simulated quarry locations.

http://nationalmap.gov/

The gis:set-drawing-color command used here sets the color used to draw the point data,

and the gis:draw command draws the points in a given size. Now when the ‘setup’ button is

pushed, the red points indicating the locations of the quarries are also displayed (Fig. S2). A

visualization like this confirms that the data appear as they should or indicates whether

adjustments need to be made to either the size of the world window or the translation of the

data in the NetLogo world envelope. Once the data appear as they should, this data can be

incorporated into a model by allowing agents and patches to interact with it.

Figure S2: NetLogo visualization showing imported GIS data. Grayscale background image drawn

from ASCII raster digital elevation model. Red dots derived from shapefile simulating locations of raw

material quarry sites.

Getting agents to interact with GIS data

There are two ways to make imported spatial data available to agents in NetLogo: by using

GIS data to create or alter entities within the NetLogo world (i.e., agents or patches), or by

using the GIS extension within agent or patch behavioral rules. In the former case, a variable

can be created that stores the GIS data within the patches or agents. For example, the

raster elevation data from the previous section might be transmitted to the patches in the

NetLogo world so that agents can easily determine the elevation at their current location. To

this, a ‘patch-owned’ variable will be needed to store the elevation data for each patch. This

can be accomplished by adding the following to the top of the code window, just beneath the

extensions:

patches-own [patch-elevation]

In this case, the patches-own command declares that any named variable within the

following brackets is an attribute of the patches. To translate the GIS elevation data into the

individual patches, the following code might be added to the ‘setup’ procedure:

ask patches [

 set patch-elevation (gis:raster-sample elevation self)

]

This uses the gis:raster-sample primitive to get raster values from the previously loaded

elevation dataset, and the self primitive to indicate that patches are to get values from their

own locations within the GIS space. This works similarly to extraction tools in a standalone

GIS. In this case, the patches extract the value from the raster values occupying the same

space. If the patch covers more than one cell in the raster, NetLogo will average the GIS

values together. This can be visualized by removing the show-data command from the

‘setup’ procedure and adding the following code to replace it:

let mx gis:maximum-of elevation

 ask patches [

 set patch-elevation (gis:raster-sample elevation self)

 ifelse patch-elevation > 0 [

 set pcolor scale-color green patch-elevation 0 mx

]

 [

 set pcolor blue

]

]

The first line of this code creates a temporary variable, mx, that holds the maximum value of

the GIS elevation data. The rest of the code colors patches with an elevation greater than

zero are in shades of green, from darker to lighter with increasing elevation toward the

maximum, while patches with an elevation less than or equal to zero are turned blue (in

other words, below or at sea level). The visualization resulting from this operation is shown

in Figure S3.

Figure S3: Visualization of NetLogo example model showing digital elevation model raster values

integrated into NetLogo patches. Elevations shaded on a gradient from low (dark) to high (light),

between values of 0 and 600m a.s.l.

To add an agent (turtle) to the example model, the following code can be added to the end of

the setup procedure:

 ask one-of patches with [patch-elevation > 0] [

 sprout 1 [

 set size 8

 set shape "person"

 set color red

 set toolkit []

]

]

This code creates an agent on a randomly chosen patch above sea-level (elevation > 0),

and sets up attributes such as size, shape, and color. Notice that the agent has an attribute

called toolkit, which is set up as an empty list using the left and right square brackets.

Because the agents (turtles) will be using this attribute individually, it will need to be

established as a “turtle-owned” variable by adding the following to the top of the code

window:

turtles-own [toolkit]

At this point, the agent can now read elevation information directly from the patches and

incorporate that information into its behavior. For example, a model could be constructed

where the agent moves more slowly through low terrain, which might have implications for

the relative amounts of time spent and cultural deposition. First, we can edit the go

procedure used in the Romanowska et al. (2019) so that agents only move to patches that

are above sea-level:

to go

 ask turtles [

 if random 9 > 0 [

 move-to one-of neighbors with [patch-elevation > 0]

]

]

 tick

end

In this go procedure, once the agent determines to take a step, the agent evaluates the

patch-elevation of the neighboring patches and moves to one of them with a value greater

than 0. Next, agents need to move with more frequency at higher elevations. Something like

the following edits to the go procedure would have this effect:

to go

 ask turtles [

 if random 9 > 0 [

 move-to one-of neighbors with [patch-elevation > 0]

 if [patch-elevation] of patch-here > 300 [

 move-to one-of neighbors with [patch-elevation > 0]

]

]

]

 tick

end

Here, after the agent makes its first move, it determines if the patch-elevation value where it

is located is greater than 300 meters and, if so, the agent will move again. In making this

determination, and evaluating whether they are above sea-level, agents are drawing on the

imported GIS data transmitted to the patches. In doing so, we are implementing a behavioral

rule in which the agent uses higher elevation places differently, creating greater probability

that the agent will move out of high elevation areas more quickly.

If we are interested in understanding how the threshold between low and high elevation

affects the model, the hard-coded value of 300 can be changed to a variable called

elevation-threshold that will be connected to the Interface using a slider:

to go

 ask turtles [

 if random 9 > 0 [

 move-to one-of neighbors with [patch-elevation > 0]

 if [patch-elevation] of patch-here > elevation-threshold [

 move-to one-of neighbors with [patch-elevation > 0]

]

]

]

 tick

end

Sliders and other Interface tools (e.g. switches, choosers, etc.) allow the user to quickly

change the value of a variable without making changes to the code. To create the elevation

threshold slider, go to the Interface tab and select “Slider” from the dropdown menu where

buttons are generated. Click in the whitespace on the Interface to create the slider, and give

this the same name as the variable (e.g. elevation-threshold). Finally, select some values for

this variable that we might want to explore in terms of a minimum, increment, and maximum

(Fig S4).

Figure S4: Creating a NetLogo slider

Similarly, if we want to examine how the relative degree of mobility between low and high

elevation areas affects the model, we can edit the go command to use a multiplier variable

(or coefficient) called elevation-multiplier which will increase the number of times the agent

performs the movement process:

to go

 ask turtles [

 if random 9 > 0 [

 move-to one-of neighbors with [patch-elevation > 0]

 if [patch-elevation] of patch-here > elevation-threshold [

 repeat (elevation-multiplier - 1) [

 move-to one-of neighbors with [patch-elevation > 0]

]

]

]

]

 tick

end

The slider created at the front can use any integer values greater than 0 for minimum,

maximum, and increment, but for this exercise we’ll use 1 for minimum, 1 for increment, and

5 for maximum. The repeat command repeats the enclosed code a given number of times, in

this case one less than the elevation-multiplier. One is subtracted so that it acts as a true

multiplier (e.g. if the value of elevation-multiplier were set to 1, then the number of additional

moves after the first move would be zero).

It is also possible for agents to interact with GIS data by using commands from the GIS

extension within agent. For example, the current model can be adapted so that agents

procure stone from quarries when they are nearby. To do this, add the following code to the

end of the go procedure, just before tick:

ask turtles [

 if gis:intersects? quarries patch-here [

 reprovision-toolkit

]

]

Here, the agents uses the gis:intersects? command to check whether the quarries dataset

(which is a set of GIS points) intersects with the patch where the agent is located. If it does,

the agent reprovisions their toolkit. However, as of yet there is no procedure called

reprovision-toolkit, so it will need to be generated at the bottom of the code window, like so:

to reprovision-toolkit

 let t gis:property-value first (filter [q -> gis:contained-by? q

patch-here] (gis:feature-list-of quarries)) "ID"

 while [length toolkit < max-carry] [

 set toolkit lput t toolkit

]

end

In addition to accessing locations for quarry data, it would useful to know from which quarry

the material in the toolkit was procured, so the first line of code within the reprovision-toolkit

procedure creates a temporary variable called t which is used to store the numerical ID

value, a property of the shapefile, for the quarry nearest to the agent. To get this value, the

filter command is used to filter a list of features within the quarries GIS dataset to only those

contained by the patch where there agent is located (which is determined using the

gis:contained-by? command). The gis:property-value command is used on the first item in

the filtered list to pull out the “ID” value for that feature. After this, a while loop is used to

repeatedly add the ID value t to the toolkit list until a maximum value (max-carry) of items is

reached. The max-carry variable, like that featured in the tutorial in Romanowksa et al.

(2019), should be instituted as a slider in the model interface using a minimum value of 1, an

interval value of 1, and a maximum value of 100.

From here, it is a short step toward a model where agents are generating a simulated

archaeological record. First, patches need to be given a patch-owned variable that stores

discarded objects, here called ‘assemblage’:

patches-own [patch-elevation assemblage]

Additionally, the following code needs to be added to the setup procedure to make

assemblage an empty list held by each patch:

ask patches [set assemblage []]

Next, adding the following procedure will allow agents to subtract tools from their kit and add

them to the assemblage of the underlying patch:

to consume-material

 if length toolkit > 0 [

 let i random length toolkit

 ask patch-here [

 set assemblage lput (item i [toolkit] of myself) assemblage

]

 set toolkit remove-item i toolkit

]

end

If the agent has any items in its toolkit list, this procedure selects a random item from the list,

adds that item to the assemblage list, and then removes the item from the toolkit list. By

adding consume-material procedure after each call of move-to one-of neighbors with [

patch-elevation > 0] within the go procedure, agents discard a tool at each stop. At this

stage by clicking the ‘setup’ and ‘go’ buttons, this model will run this process without

stopping. The go procedure should now look like this:

to go

 ask turtles [

 if random 9 > 0 [

 move-to one-of neighbors with [patch-elevation > 0]

 consume-material

 if [patch-elevation] of patch-here > elevation-threshold [

 repeat (elevation-multiplier - 1) [

 move-to one-of neighbors with [patch-elevation > 0]

 consume-material

]

]

]

]

 ask turtles [

 if gis:intersects? quarries patch-here [

 reprovision-toolkit

]

]

 tick

end

Adding the following code to the end of the go procedure will stop the simulation after

100,000 time steps (ticks), while displaying the relative densities of ‘tools’ in the patch-level

‘assemblages’:

if ticks = 100000 [

 let mx max [length assemblage] of patches

 ask patches with [length assemblage > 0] [

 set pcolor scale-color red (length assemblage) 0 mx

]

 stop

]

Here, a temporary variable mx is used to hold the size of the largest assemblage (length

assemblage) among all patches. Patches with any artefacts in their assemblages are then

recolored red, shaded from dark (few artefacts) to light (many artefacts) (Fig. S5), with a

maximum value equal to mx in order to allow for comparisons between between runs when

assemblage size might vary widely:

Figure S5: Visualization of NetLogo example model showing agent (yellow figure) and densities of

‘tools’ (dark red = low, light red = high) after 100,000 time steps.

However, if the duration of the simulation was something that we wanted to explore, it can

be converted to a variable (time-limit) that could be added as a slider in the model interface:

if ticks = time-limit [

 let mx max [length assemblage] of patches

 ask patches with [length assemblage > 0] [

 set pcolor scale-color red (length assemblage) 0 mx

]

 stop

]

Finally, we can export data from the model for use in a GIS environment. To do this, first

create a new patch-owned variable and call it diversity:

patches-own [patch-elevation assemblage diversity]

Next, go to the Interface tab and add a button. Call the button “write raster”, and add the

following code:

ask patches [set diversity length remove-duplicates assemblage]

let raster gis:patch-dataset diversity

gis:store-dataset raster "diversity.asc"

When the button is pressed, each patch takes the assemblage list and uses remove-

duplicates to reduce it to only the unique values in it (for example, a list [3 3 3 3 5 5] would

become [3 5]), and records the number of values in that list as diversity. These values are

then converted into a raster dataset at the same resolution as the NetLogo patches, and

these are then saved as an ASCII file called “diversity.asc”. This ASCII file can then be

imported into any GIS environment capable of handling this data type (e.g. ArcGIS, QGIS,

etc) and used to generate maps (Figure S6) or into other spatial analysis software.

Figure S6: Visualisation of ‘diversity.asc’ output file as a GIS-generated map

References

Brantingham, P. Jeffrey

2003 A neutral model of stone raw material procurement. American Anthropologist

68(3):487–509.

Romanowska, Iza, Stefani Crabtree, Kathryn Harris, and Benjamin Davies.

2019 Agent-based modeling for archaeologists: A step-by-step guide for using agent-

based modeling in archaeological research (Part I of III). Advances in Archaeological

Practice 7(2):xxx-xxxx

Wilensky, Uri

1999 NetLogo. Center for Connected Learning and Computer-Based Modeling,

Northwestern University (http://ccl.northwestern.edu/netlogo), Evanston, IL.

Code (comments preceded by semi-colons)

; ADD GIS EXTENSION

extensions [gis]

; GLOBAL VARIABLES

globals [elevation quarries base orth]

; AGENT (TURTLE) VARIABLES

turtles-own [toolkit]

; PATCH VARIABLES

patches-own [patch-elevation assemblage material-type diversity]

; SETUP PROCEDURE

to setup

 ; clear model

 clear-all

 ; use coordinate system associated with raster dataset

 gis:load-coordinate-system "dem.prj"

 ; load elevation data from ascii raster

 set elevation gis:load-dataset "dem.asc"

 ; load lithic source data from point shapefile

 set quarries gis:load-dataset "quarries.shp"

 ; resize the world to fit the patch-elevation data

 gis:set-world-envelope gis:envelope-of elevation

 ; add elevation data to patch data and color accordingly

 let mx gis:maximum-of elevation

 ask patches [

 set patch-elevation (gis:raster-sample elevation self)

 ifelse patch-elevation > 0 [

 set pcolor scale-color green patch-elevation 0 mx

]

 [

 set pcolor blue

]

]

 ; create an agent with an empty toolkit list

 ask one-of patches with [patch-elevation > 0] [

 sprout 1 [

 set size 8

 set shape "person"

 set color yellow

 set toolkit []

]

]

 ;give patches empty assemblage lists

 ask patches [

 set assemblage []

]

 ;reset time

 reset-ticks

end

; GO PROCEDURE

to go

 ; move agents based on elevation

 ask turtles [

 if random 9 > 0 [

 move-to one-of neighbors with [patch-elevation > 0]

 if [patch-elevation] of patch-here > elevation-threshold [

 repeat (elevation-multiplier - 1) [

 move-to one-of neighbors with [patch-elevation > 0]

]

]

]

]

 ; if any quarries nearby, reprovision

 ask turtles [

 if gis:intersects? quarries patch-here [

 reprovision-toolkit

]

]

 ; if any tools in toolkit, discard

 ask turtles [

 if length toolkit > 0 [

 discard-tools

]

]

 ; if simulation reaches 100,000 time steps, recolor patches

 ; based on artifact density and stop simulation

 if ticks = time-limit [

 ask patches with [length assemblage > 0] [

 set pcolor scale-color red length assemblage 0 30

]

stop

]

 ; advance time

 tick

end

; PROCEDURE FOR REPROVISIONING

to reprovision-toolkit

 ; stores the ID of a nearby quarry as a temporary variable t

 let t gis:property-value first (filter [q -> gis:contained-by? q

patch-here] (gis:feature-list-of quarries)) "ID"

 ; repeatedly adds value t to toolkit until toolkit is full

 while [length toolkit < 100] [

 set toolkit lput t toolkit

]

end

; PROCEDURE FOR DISCARDING TOOLS

to discard-tools

 ; selects random item from toolkit

 let i random length toolkit

 ; adds that item to the local assemblage

 ask patch-here [

 set assemblage lput (item i [toolkit] of myself) assemblage

]

 ; removes that item from toolkit

 set toolkit remove-item i toolkit

end

Model Interface

