
Supporting Information – Robocrystallographer: automated crystal structure text descriptions and analysis
Alex M. Ganose,1 and Anubhav Jain1
1Lawrence Berkeley National Laboratory, Energy Technologies Area, 1 Cyclotron Road, Berkeley, CA 94720, United States
Email: ajain@lbl.gov
Fuzzy prototype matching algorithm
The geometric fingerprint of a structure is calculated using the SiteStatsFingerprint with the “CrystalNNFingerprint_ops” preset, available in the matminer package.1 The fingerprint vector, ,  for a site with index i is defined as



where the elements  are n site descriptors for site i (geometric order parameters2 in our case). A structure fingerprint with N sites takes element-wise statistics (in our case, mean and standard deviations) across all sites in the structure:



For example, one element of this structure fingerprint may correspond to the fraction of sites with tetrahedral coordination, another element may correspond to fraction of sites with octahedral coordination, and yet another may correspond to the standard deviation of the "tetrahedrality" of sites (with each site having a range of 0 to 1 tetrahedrality as determined by order parameters). The Euclidean fingerprint distance , between two structure fingerprints,  and , is given by



In robocrystallographer, the threshold for a fuzzy match between a structure and prototype was set as .
Molecule-within-crystal identification example
The ABX3 perovskite prototype contains only 3 atomic elements. In the hybrid perovskites, a molecular cation sits on the A site of the perovskite structure. Traditional structure matching algorithms fail to identify the hybrid perovskites as perovskite structured, as the number and positions of atomic sites do not match the prototype structure. In robocrystallographer, we simplify molecular (zero-dimensional) components to a single site (using the component center of mass) before mineral matching. For example, in the CH3NH3PbI3 structure the methylammonium cation sits on the A site (Figure 1). Despite this complication, robocrystallographer correctly identifies the structure as perovskite. The text description produced by robocrystallographer for CH3NH3PbI3 is as follows: “CH3NH3PbI3 is orthorhombic perovskite structured and crystallizes in the orthorhombic Pnma space group. The structure consists of four methylammonium molecules and one PbI3 framework. In the PbI3 framework, Pb2+ is bonded to six I1– atoms to form corner-sharing PbI6 octahedra. The corner-sharing octahedral tilt angles range from 12–29°. There are two shorter (3.25 Å) and four longer (3.26 Å) Pb–I bond lengths. There are two inequivalent I1– sites. In the first I1- site, I1– is bonded in a distorted linear geometry to two equivalent Pb2+ atoms. In the second I1– site, I1– is bonded in a bent 150 degrees geometry to two equivalent Pb2+ atoms.”
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Figure 1. Crystal structure of CH3NH3PbI3, as viewed along a) the [100] direction and b) [010] direction. Lead, iodine, carbon, nitrogen, and hydrogen atoms indicated by grey, purple, brown, blue and pink spheres, respectively.
Condensed JSON format
The descriptive JavaScript Object Notation (JSON) representation of the condensed structure contains keys for each property including the mineral, formula, space group information and dimensionality. Each inequivalent site in the structure is assigned a unique index that is consistently referenced throughout the JSON. For example, the JSON representation for a single site may appear as

"0": {"element": "Mo4+",
       "geometry": {
           "distorted": true,
           "type": "pentagonal pyramidal"
       },
       "nn": [2, 2, 2, 2, 2, 2],
       "nnn": {"edge": [0, 0, 0, 0, 0, 0]},
       "sym_labels": [1]}

where “nn” and “nnn” refer to “nearest neighbors” and “next-nearest neighbor”, and the numbers listed are the site indices of the neighbor atoms. The components are similarly given unique indices, with the corresponding JSON formatted as

"0": {"formula": "MoS2",
      "sites": [0, 2],
      "dimensionality": 2,
      "molecule_name": null,
      "orientation": [0, 0, 1]}

where the integers listed under “sites” correspond to the inequivalent site indices. The JSON contains similar keys containing the bond distances, bond angles, and site connectivities. By using a symbolic reference for each site, rather than repeating the site information in multiple places, the size of the JSON representation remains small. The supplementary JSON files provided showcase complete examples.
Transforming the JSON into a text description
The conversion of the descriptive JSON to human-readable text description is facilitated by an adapter class that resolves the symbolic references in the JSON and provides helper functions for summarizing the data of groups of sites. The description is generated by following a prescriptive layout. Many options are provided to customize the description, for example by including or excluding the oxidation states, symmetry labels, bond lengths, and anion polyhedra. The code also includes the option to provide descriptions compatible with the LaTeX typesetting system.3
Transforming the JSON into machine learning features
In order to use the analysis provided by robocrystallographer in statistical machine learning, we have implemented a new structure featurizer following the featurizer model provided by the matminer code.1 The robocrystallographer featurizer is available in the featurize submodule. The generated features include the dimensionality, whether components of various dimensionality are present, whether the structure contains a number of known molecules, the average corner-sharing octahedral tilt angles, and whether the structure contains corner, edge, or face-sharing polyhedral. The full list of features generated by robocrystallographer is provided below:
	mineral_prototype
	contains_distorted_hexagonal bipyramidal

	spg_symbol
	contains_distorted_cuboctahedral

	crystal_system
	average_site_cn

	dimensionality
	average_cation_cn

	is_vdw_heterostructure
	average_anion_cn

	is_interpenetrated
	contains_polyhedra

	is_intercalated
	contains_corner_sharing_polyhedra

	is_only_3d
	contains_edge_sharing_polyhedra

	is_only_2d
	contains_face_sharing_polyhedra

	is_only_1d
	contains_corner_tetrahedral

	is_only_0d
	contains_corner_octahedral

	is_3d_2d_1d_0d
	contains_corner_trigonal pyramidal

	is_3d_2d_1d
	contains_corner_square pyramidal

	is_3d_2d_0d
	contains_corner_trigonal bipyramidal

	is_3d_1d_0d
	contains_corner_pentagonal pyramidal

	is_3d_2d
	contains_corner_hexagonal pyramidal

	is_3d_1d
	contains_corner_pentagonal bipyramidal

	is_3d_0d
	contains_corner_hexagonal bipyramidal

	is_2d_1d_0d
	contains_corner_cuboctahedral

	is_2d_1d
	contains_edge_tetrahedral

	is_2d_0d
	contains_edge_octahedral

	is_1d_0d
	contains_edge_trigonal pyramidal

	contains_3d_component
	contains_edge_square pyramidal

	contains_2d_component
	contains_edge_trigonal bipyramidal

	contains_1d_component
	contains_edge_pentagonal pyramidal

	contains_0d_component
	contains_edge_hexagonal pyramidal

	contains_named_molecule
	contains_edge_pentagonal bipyramidal

	contains_water
	contains_edge_hexagonal bipyramidal

	contains_oxygen
	contains_edge_cuboctahedral

	contains_ammonia
	contains_face_tetrahedral

	contains_methane
	contains_face_octahedral

	contains_L-shaped
	contains_face_trigonal pyramidal

	contains_water-like
	contains_face_square pyramidal

	contains_bent 120 degrees
	contains_face_trigonal bipyramidal

	contains_bent 150 degrees
	contains_face_pentagonal pyramidal

	contains_linear
	contains_face_hexagonal pyramidal

	contains_trigonal planar
	contains_face_pentagonal bipyramidal

	contains_trigonal non-coplanar
	contains_face_hexagonal bipyramidal

	contains_T-shaped
	contains_face_cuboctahedral

	contains_square co-planar
	corner_sharing_octahedral_tilt_angle

	contains_tetrahedral
	frac_site_polyhedra

	contains_rectangular see-saw-like
	frac_sites_L-shaped

	contains_see-saw-like
	frac_sites_water-like

	contains_trigonal pyramidal
	frac_sites_bent 120 degrees

	contains_pentagonal planar
	frac_sites_bent 150 degrees

	contains_square pyramidal
	frac_sites_linear

	contains_trigonal bipyramidal
	frac_sites_trigonal planar

	contains_hexagonal planar
	frac_sites_trigonal non-coplanar

	contains_octahedral
	frac_sites_T-shaped

	contains_pentagonal pyramidal
	frac_sites_square co-planar

	contains_hexagonal pyramidal
	frac_sites_tetrahedral

	contains_pentagonal bipyramidal
	frac_sites_rectangular see-saw-like

	contains_body-centered cubic
	frac_sites_see-saw-like

	contains_hexagonal bipyramidal
	frac_sites_trigonal pyramidal

	contains_cuboctahedral
	frac_sites_pentagonal planar

	contains_distorted_L-shaped
	frac_sites_square pyramidal

	contains_distorted_water-like
	frac_sites_trigonal bipyramidal

	contains_distorted_bent 120 degrees
	frac_sites_hexagonal planar

	contains_distorted_bent 150 degrees
	frac_sites_octahedral

	contains_distorted_linear
	frac_sites_pentagonal pyramidal

	contains_distorted_trigonal planar
	frac_sites_hexagonal pyramidal

	contains_distorted_trigonal non-coplanar
	frac_sites_pentagonal bipyramidal

	contains_distorted_T-shaped
	frac_sites_body-centered cubic

	contains_distorted_square co-planar
	frac_sites_hexagonal bipyramidal

	contains_distorted_tetrahedral
	frac_sites_cuboctahedral

	contains_distorted_rectangular see-saw-like
	frac_sites_1_coordinate

	contains_distorted_see-saw-like
	frac_sites_2_coordinate

	contains_distorted_trigonal pyramidal
	frac_sites_3_coordinate

	contains_distorted_pentagonal planar
	frac_sites_4_coordinate

	contains_distorted_square pyramidal
	frac_sites_5_coordinate

	contains_distorted_trigonal bipyramidal
	frac_sites_6_coordinate

	contains_distorted_hexagonal planar
	frac_sites_7_coordinate

	contains_distorted_octahedral
	frac_sites_8_coordinate

	contains_distorted_pentagonal pyramidal
	frac_sites_9_coordinate

	contains_distorted_hexagonal pyramidal
	frac_sites_10_coordinate

	contains_distorted_pentagonal bipyramidal
	frac_sites_11_coordinate

	contains_distorted_body-centered cubic
	frac_sites_12_coordinate

	max_bond_length
	min_bond_length

	average_bond_length
	



We note that the "is_only_3d" and "is_only_2d" in robocrystallographer differ from the dimensionality featurizers currently available in matminer in two ways: 
· Matminer employs a different dimensionality finding scheme – in particular, one that tries to determine low-index planes that do not "cut across" any bonds. The dimensionality scheme in robocrystallographer is expected to be more robust as it does not require low-index planes.
The matminer dimensionality algorithm only defines the overall dimensionality. For example, a 3D structure will be labelled as 3D even though it may also contain intercalants or 1D chains. The robocrystallographer algorithm can handle mixed dimensionality and provides orientation information.
In this way, the robocrystallographer featurizers give more fidelity of dimensionality information. Despite this, it is clear that these features will overlap in many cases. For example, the “dimensionality” feature is very similar to the feature of the same name in matminer. Furthermore, the “spg_symbol” and “crystal_system” features are equal to the features produced by the “GlobalSymmetryFeatures” featurizer in matminer. 
Resource usage and timings
To investigate the computational demand of robocrystallographer, here we report timing information for the results presented in this letter. All structures were processed on a MacBook Pro with a dual core 2.5 GHz Intel Core i7 processor. For the four structures presented in Figure 3 of the main text, the time taken to condense each structure into the descriptive JSON totaled 2.0 s for GaAs (2 atoms), 4.4 s for CrVO4 (12 atoms), 3.0 s for BiOCuSe (8 atoms), and 6.35 s for GaF4NH4 (20 atoms). For GaF4NH4, this time includes that spent on network requests when matching the molecular components. The time taken to produce the text description was marginal in all cases (less than 0.2 s).
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Figure 2. Robocrystallographer featurization timing information for the 1,181 structures in the "elastic_tensor_2015" matminer dataset. Parts a) and b) detail the absolute time spent on different analysis types. Parts c) and d) show the fraction of the overall time per analysis type. Lines show the rolling average to improve clarity.

When processing many structures, such as the 1,181 structures in the "elastic_tensor_2015" matminer dataset1,4 discussed in the machine learning section of the main text, the time taken can be considerably longer. For this dataset, the robocrystallographer features took 55 minutes to compute when parallelized over both available cores, equivalent to 2.79 s per structure or 0.22 s per atomic site. To understand which portions of the code are the most computationally demanding, we have broken down the timings by analysis type. The performance for each analysis step depends on the total number of atoms in the structure. For small structures (less than 10 atoms), 55 % of the total time is spent on mineral matching, with the remainder split evenly between generating the local and semi-local site analysis, and extracting the component information. For larger structures (greater than 30 atoms) mineral matching and generating the local and semi-local site information take approximately the same amount of time and together account for 85 % of the total processing time. The full timing breakdown for each analysis type is provided in Figure 2.
Effect of near neighbor algorithm on assigned dimensionality
To investigate the accuracy of different near neighbor bonding schemes in describing structure dimensionality, we tested robocrystallapher on 40 materials for which the bonding dimensionality has been extensively described in the literature. A broad range of materials were included in our test set, including some organic crystals and hybrid organic-inorganic systems. We considered four dimensionality classes (0D, 1D, 2D, and 3D), with 10 compounds in each class.  Three bonding schemes were tested, all of which are implemented in the pymatgen package: CrystalNN using the default parameters, VoronoiNN with the tol parameter set to 0.5, and BrunnerNN using the default settings. Figure 3 shows the agreement of the bonding schemes against the human determined dimensionalities. 
All algorithms correctly determine the dimensionality of the 3D systems, however, significant disagreements are found for the other classes. Of the 2D compounds, the bonding algorithms correctly predict roughly half as 2D but overestimate the degree of bonding in the remainder, instead classifying them as 3D. For the 1D compounds, CrystalNN and BrunnerNN again correctly identify half the compounds as 1D with the remainder classed as 2D and 3D. Both algorithms perform considerably better than VoronoiNN, which only identifies 20 % of the systems correctly as 1D. All algorithms struggled for the 0D compounds, in each case only identifying 1 out of the 10 compounds correctly as 0D. Overall, the results indicate the bonding schemes overestimate structural bonding, tending to higher dimensionalities. VoronoiNN performs poorest, with CrystalNN and BrunnerNN showing comparable accuracy. The full list of compounds and the dimensionality predicted by each algorithm is given in Table 1.
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[bookmark: _Ref6315808][bookmark: _Ref6315778]Figure 3. Performance of near neighbor bonding schemes in determining structure dimensionality. The human determined dimensionality (as described in the literature) is given on the y axis and compared to the dimensionality determined by the a) CrystalNN, b) VoronoiNN, and c) BrunnerNN schemes implemented in pymatgen. The heatmap indicates the degree of agreement between human and algorithmic dimensionality determination. A score of 1.0 on the diagonal indicates perfect agreement with literature descriptions.

[bookmark: _Ref6316948]Table 1. List of compounds used to test the accuracy of different bonding schemes in determining structure dimensionality. The “Human” column gives the dimensionality assigned to the structure in the literature.
	Formula
	mp-id
	Human
	CrystalNN
	VoronoiNN
	BrunnerNN

	Cs2SnI6
	mp-27636
	0
	3
	3
	3

	Ba8Sn4S15
	mp-1195594
	0
	3
	3
	3

	Cs4PbBr6
	mp-23436
	0
	3
	3
	3

	K3H(SO4)2
	mp-23779
	0
	3
	3
	3

	Rb3H(SeO4)2
	mp-23897
	0
	3
	3
	3

	Li2Ti(O3I)6
	mp-1222778
	0
	3
	3
	3

	Ba3Sb2S7
	mp-1195624
	0
	3
	3
	3

	C
	mp-667273
	0
	0
	0
	0

	KBaSbSe3
	mp-1190698
	0
	3
	3
	3

	CsSbClF3
	mp-23576
	0
	3
	3
	3

	BiSI
	mp-23514
	1
	1
	3
	1

	Ca3(CoO3)2
	mp-18792
	1
	3
	3
	3

	Sb2Se3
	mp-2160
	1
	2
	3
	2

	Ca3MnCuO6
	mp-1214191
	1
	3
	3
	3

	V2PS10
	mp-648414
	1
	1
	3
	1

	BaAlH5
	mp-644097
	1
	3
	3
	3

	KNb2PS10
	mp-542972
	1
	3
	3
	3

	PNF2
	mp-560008
	1
	1
	1
	1

	AlPS4
	mp-1071955
	1
	1
	1
	1

	Ta4SiTe4
	mp-28509
	1
	1
	3
	1

	Ta4C3
	mp-1218000
	2
	2
	3
	2

	Ti2C
	mp-1217106
	2
	2
	3
	2

	K2NiF4
	mp-556546
	2
	3
	3
	3

	TlAlF4
	mp-3751
	2
	3
	3
	3

	C
	mp-48
	2
	2
	2
	2

	WSe2
	mp-1821
	2
	2
	2
	2

	Zn2In2S5
	mp-542644
	2
	2
	2
	2

	CaCuP
	mp-8432
	2
	3
	3
	3

	NaFeO2
	mp-19359
	2
	3
	3
	3

	LaFePO
	mp-542977
	2
	3
	2
	2

	WFeO4
	mp-19421
	3
	3
	3
	3

	K2SO4
	mp-4529
	3
	3
	3
	3

	SrTiO3
	mp-4651
	3
	3
	3
	3

	CuS
	mp-555599
	3
	3
	3
	3

	Pb3O4
	mp-22633
	3
	3
	3
	3

	Cu2ZnSnS4
	mp-1079541
	3
	3
	3
	3

	Mn2O3
	mp-565203
	3
	3
	3
	3

	RbF3
	mp-975312
	3
	3
	3
	3

	NiAs
	mp-590
	3
	3
	3
	3

	Cu5Zn8
	mp-1368
	3
	3
	3
	3



Machine learning model parameters and feature importances
In this work, statistical machine learning was performed using the Scikit-Learn5 package. A random forest regressor was used as the machine learning model using the default Scikit-Learn hyperparameters (Table 1). The same hyperparameters were used for all models throughout this work. 
[bookmark: _Ref535272013]Table 2. List of random forest regressor hyperparameters used in all machine learning models reported.
	Parameter
	Value

	n_estimators
	100

	max_depth
	None

	max_features
	100

	max_leaf_nodes
	None

	min_impurity_decrease
	0.0

	min_impurity_split
	None

	min_samples_leaf
	1

	min_samples_split
	2

	min_weight_fraction_leaf
	0



Models were evaluated using 10-fold cross validation. The “elastic_tensor_2015” dataset available in matminer,1 adapted from the work of de Jong et al.,4 was used as the training dataset. This dataset consists of 1,181 inorganic compounds taken from the Materials Project, with elastic constants calculated using density–functional theory calculations. All models included the Magpie composition-based features detailed by Ward et al.6 and computed using matminer version 0.5.5.1 A composition-only model was compared against models containing: i) Magpie and sine matrix structural features;7 and ii) Magpie and robocrystallographer features. For each model, the total number of features was reduced to 10 using the MultiSURF algorithm,8 as implemented in the Scikit-Rebate package.9 The performance of each model is shown in Figure 4.
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[bookmark: _Ref7689293]Figure 4. Comparison of DFT training data (KDFT) with machine learning predictions (Kpred) of bulk modulus (K) across all 1,181 structures present in the “elastic_tensor_2015” matminer1 dataset taken from de Jong et al.4 Models were trained on data containing a) composition features only, b) composition and structure features, and c) composition and robocrystallographer features. 
	The feature importances for each model are shown in Figure 5. Interestingly, for the model containing Magpie and sine Coulomb structural features the final feature set after feature reduction does not contain any structure-based features. In contrast, one robocrystallographer feature is retained after feature reduction (average_bond_length), indicating that the robocrystallographer features add value that the sine matrix features do not.
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[bookmark: _Ref7697209][bookmark: _GoBack]Figure 5. Comparison of feature importances across different machine learning models.4 Models were trained on data containing a) composition features only, b) composition and structure features, and c) composition and robocrystallographer features. The features generated by robocrystallographer are emphasized for clarity.
Mineral matching for defective structures
To test the performance of robocrystallographer on defected structures, we have evaluated the mineral matching routines on structures containing vacancy defects. We considered three crystal structures (diamond, rutile TiO2, and calcite CaCO3) and introduced an increasing number of vacancies before calculating the structure fingerprint distance to the ideal prototype structure. In robocrystallographer fuzzy mineral matching uses a structure fingerprint cutoff of 0.4 to determine if a prototype match is found. The results suggest the degree of tolerance of the mineral matching schemes to defects is structure dependent. In silicon, the fingerprint distance quickly reaches 0.4 at around 1 % VC concentration. Conversely, for the binary and ternary compounds, the mineral matching routines are considerably more robust, with the fingerprint distance remaining below 0.4 until ~3 % vacancy concentration.
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