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Dataset
We initially developed a database of  values for impurities including C, H, N, O and metal elements in various hosts from references.[1-25] However, this database was reduced to remove C, H, N, and O impurity systems since those impurities may show different physics than metallic impurities (e.g., due to interstitial vs. substitutional states and diffusion mechanism), and to enable the use of a consistent homologous temperature for the data to try to give values with the same temperature influence. The final reduced dataset we used for training the machine learning model contained effective charge of impurities in 26 dilute alloys and 23 pure metals which are experimentally determined from different literature studies.[1-20] The dilute alloys included Ag, Al, Au, Cu, Nb, Pb and Sn alloy systems, while the pure metals were Ag, Al, Au, Cd, Co, Cr, Cu, Fe, Ga, In, Li, Mg, Na, Nb, Ni, Pb, Pd, Pt, Sn, Tl, U, Zn and Zr. Some of the systems were measured more than once by different groups (e.g., pure Ag, pure Au, pure Cu, etc.). With these cases, the average value is taken before adding to the dataset so that the 49 effective charges correspond to unique systems. The homologous temperature (i.e., the temperature of a material as a fraction of its melting point temperature) of the 49 experimentally-determined effectives charge are measured at, or extrapolated to be, 0.9 ± 0.06, to make the temperature condition consistent. This step is essential as the value of  is strongly temperature-dependent in some cases. The effective charge of the training dataset ranges from +3.00 to -90.00, and the standard deviation (σ) is 20.96. Each alloy or pure metal system is characterized with 424 descriptors including elemental properties for the host and impurity atoms. These descriptors were compiled from the database included in Wolverton Research Group’s Materials Agnostic Platform for Informatics and Exploration (MAGPIE).[26] The complete initially-developed database, as well as the complete database used in the study, including all effective charges and all descriptors for all alloy and pure metal systems, can be also found on Figshare with DOI 10.6084/m9.figshare.7175072 (see data section in the main text). 



Cross validation
Cross-validation (CV) methods assess the ability of a model to predict new data that was not used in the training dataset. Three different CV methods (e.g., the 5-fold CV test, leave-out (LO) alloy-group CV test, and LO element-group CV test), were used in this study to assess the present LR model. The 5-fold CV test randomly partitioned the dataset into five folds and took four of them as the training sub-dataset to build a LR model with the remaining fold as the validation sub-dataset. The CV process is repeated five times, with each of the folds used exactly once as the validation dataset. The five results were averaged to yield one prediction for each data point and the root-mean-square-error (RMSE) of these predictions was called the 5-fold CV RMSE. The best and worst prediction represents the prediction of each data point with the lowest RMSE and the highest RMSE over all CV splits. The LO alloy-group CV method partitioned the dataset into two sub-datasets: one is the alloy system left out from the dataset, designated as the validation sub-dataset, and the other is the remaining systems, designated as the training sub-dataset. An alloy system is defined as a host and all its impurities. The RMSE error in the predictions for each validation sub-dataset was determined and then these values were averaged over all the alloy systems to yield the average LO alloy-group CV RMSE. The LO element-group CV also partitioned the dataset into two sub-datasets: one was the validation sub-dataset containing all systems with a given element (whether as host or impurity) and the other was the training sub-dataset containing all remaining systems. The training sub-dataset was used for building the LR model, which was then used to predict the validation sub-dataset. The RMSE error in the predictions for each validation sub-dataset was determined and then these values were averaged over all the alloy systems to yield the average LO element-group CV RMSE. The LO element-group CV test ensures that our model is able to function without any information for a given element.
Feature selection
The sequential forward selection algorithm (SFS) is a practical way to find a reasonably accurate combination of descriptors to build a ML model. It reduces an initial huge dimensional feature space to a desired dimensional feature subspace by adding one feature at a time to the ML model, which is the LR model in this study. The selection is scored based on a CV RMSE, and the feature with the lowest CV RMSE value is sequentially added to the list. The randomness in 5-fold CV test may not adequately test the predictive ability of the model due to some excluded validation data points potentially being quite similar to some in the training dataset, and therefore may not return a robust descriptor list. Therefore, the LO alloy-group CV method was used during SFS. By this method, our dataset is divided into 23 individual training-testing sub-dataset pairs. The average RMSE of the 23 individual CV tests is then the SFS scoring metric. 


Error 
	Error bars can be confusing to interpret if their exact definition is unclear. Therefore, in this section all the errors shown in this paper are briefly described. Each bullet point below corresponds to a given quantity and the corresponding text gives the description of how the error on that quantity is determined.
· The average RMSE of the 5-fold CV over 20 iterations: The error is the standard deviation of the distribution of the RMSEs from the 20 iterations. To clarify, this error is not the standard error in the mean of the RMSEs over 20 iterations, although that could also be of interest.
· The average RMSE/σ of the 5-fold CV over 20 iterations: This is the same quantity as the average RMSE of the 5-fold CV over 20 iterations divided by a constant σ, where σ is the standard deviation of the distribution of the whole dataset.
· The average RMSE of the LO alloy-group CV: The error is the standard deviation of the distribution of the RMSEs from the 23 individual LO alloy-group tests.
· The average RMSE/σ of the LO alloy-group CV: This is the same quantity as the average RMSE of the LO alloy-group CV but divided by a constant σ, where σ is the standard deviation of the distribution of the whole dataset.
· The average RMSE of the LO element-group CV: The error is the standard deviation of the distribution of the RMSEs of the 24 individual LO element -group tests.
· The average RMSE/σ of the LO element-group CV: This is the same quantity as the average RMSE of the LO element-group CV but divided by a constant σ, where σ is usually the standard deviation of the distribution of the whole dataset. However, the σ value in the average RMSE/σ of the LO element-group CV shown in Fig. 3 and Fig. S5 is the individual standard deviation of the distribution of the validation sub-dataset.



R-squared (R2) calculation
	The coefficient of determination, i.e., R-squared (R2), provides a measure of how well a future sample is like to be predicted by the present model. The formula to calculate the R-squared (R2) in the present work in shown as Eq. (S1):

where  is the predicted value of the -th sample,  is the corresponding true value,  is the average of the true value,  is the sum of the squared regression error, which is the variance of the residuals, and  is the sum of the squared total error, which is the variance of the data set. The best score of R2 is 1.0 when  is zero. The R2 can go to negative value when  is greater than . The negative value suggests that the present regression result is even worse than using the mean value as a rough prediction. The R2 value of the 5-fold CV test is calculated for averaged predicted values over 20 iterations, so a single R2 value is obtained. For the LO alloy-group CV test, or the LO element-group CV test, the R2 value is calculated with aggregated data from all the individual groups so a single R2 value is obtained.




Model constructed by using the SFS-selected descriptors
Figure S1a shows the learning curve when performing the SFS algorithm with LO alloy-group CV. Every point in the plot is the average CV RMSE of 23 individual CV tests with the shaded region representing the standard deviation (σ) of the RMSE. When the first descriptor was selected in the model, the average CV RMSE was 8.73 ± 7.29. The average CV RMSE kept decreasing when adding new descriptors into the model and reached a plateau when the number of descriptors in the model was equal to five (as well as a constant term descriptor which we always include in the model but do not explicitly include as a descriptor when giving the number and lists of descriptors). The monotonic reduction of the RMSE suggested significant performance improvement of the LR model for up to five descriptors, and the plateau suggested that it would be ineffective to add more than five descriptors, which may result in over-fitting. The optimal number of descriptors was therefore taken as five to construct a LR model for effective charge prediction. The LO alloy-group CV RMSE for these first five descriptors was 4.76 ± 3.34. The descriptors selected by SFS from the first to the fifth were: (1) thermal conductivity of host element, (2) the minimum value of thermal conductivity between the host and impurity, (3) the periodic table column difference between the host and impurity, (4) the electronegativity difference between the host and impurity and (5) the compositional average of the number of p valence electrons (note that the difference between host and impurity is taken with the absolute value). These descriptors will be called descriptor set 1.
[image: ]
Figure S1. Learning curve during sequential forward selection to decide the optimal numbers of descriptors.
To assess the model predictive ability of the model using descriptor set 1, Fig. S2a shows the result of 20 iterations of random 5-fold CV. The 5-fold CV test average RMSE was 8.01 ± 0.30 with R2 of 0.84. The average RMSE was smaller than the dataset standard deviation, i.e., 20.96, and yielded an average RMSE/σ value of 0.38 ± 0.01. Figure S2b shows the result of LO alloy-group CV test. The LO alloy-group CV RMSE was 4.76 ± 3.34 (RMSE/σ value of 0.23 ± 0.16) with R2 of 0.86. The 5-fold CV RMSE is somewhat larger than the LO alloy-group CV, which may be because the descriptors were optimized for the LO alloy-group CV and not the 5-fold CV. Figure S2c shows the full fit to the 49 effective charges dataset using the LR model and the RMSE is 6.97 with R2 of 0.88. These values are quite close to the 5-fold CV scores, suggesting only modest over-fitting is present in the full fit.
The fact that the different CV approaches yielded average CV root-mean-square-error divided by whole data set standard deviation (RMSE/σ) values less than 0.4, R2 values greater than 0.8, and similar error statistics to a full fit suggests that the model captured some important descriptors for predicting the effective charges in different systems and may have useful predictive ability. However, the five descriptors may be significantly influenced by the approximate SFS approach and the small data set, and therefore not be the most physically reasonable quantities. For example, considering that the data set is partially composed of dilute alloy systems, it was perhaps unreasonable to use the compositional average in the descriptors. In addition, it seems likely that the minimum value of thermal conductivity between the host and impurity was attempting to include the physics of the impurity, not the host, as the host thermal conductivity was already in the first descriptor. Therefore, it was essential to reassess the present descriptor list based on domain-specific knowledge of the physics governing z*.
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Figure S2. (a) The 5-fold CV test (RMSE = 8.01 ± 0.30, RMSE/σ = 0.38 ± 0.01, and R2 = 0.84), (b) the LO alloy-group CV test (RMSE = 4.76 ± 3.34, RMSE/σ = 0.23 ± 0.16, and R2 = 0.86), and (c) the full fit plot (RMSE = 6.97, and R2 = 0.88).
Residual plot
Figure S3a and S3b contain the histogram of residual plots for the 5-fold CV test for all the 20 iterations, and the LO alloy-group CV test, respectively when using descriptor set 2 to construct the model. The histogram of residual plot shows the residuals (defined as the difference between the experimental and predicted values) from the model on the horizontal axis versus to the frequency each residual value occurs on the vertical axis. The plots show an approximately normal distribution, further supporting our choice of the present model is appropriate.
[image: ]
Figure S3. The histogram of the residual plot for (a) 5-fold CV test and (b) LO alloy-group CV test.


Statistical analysis
All the statistics results discussed in this section were obtained by using the StatsModels python package.[27] The t statistic is a regression coefficient divided by its standard error, representing how significantly different a given coefficient is from zero. A more rigorous way to assess the significance of descriptors is via the p-value, which is determined by comparing the t statistics on each descriptor with the value in the Student’s t distribution, shown as the p (>t) column in Table 1 in the main text. The p-value tests the null hypothesis, which is that a given coefficient is equal to zero. A low p-value, which is typically less than a critical value of 0.05,[28] suggests that the null hypothesis can be rejected, i.e., adding a given descriptor is statistically significant to the model. The p-values of the five descriptors in this model are all less than 0.05, which indicates that the addition of the five descriptors are statistically significant to the model. 
The multicollinearity of the five descriptors can be quantified by using the VIF value, which represents how much higher the variance of the coefficient of a given descriptor is when it is correlated with the other four compared to the case when they are uncorrelated. If the variance is inflated, the precision of the given coefficient of a certain descriptor will be decreased, which can cause difficulty in determining the impact of a given descriptor on the effective charge change. Typically, if the VIF value of a given descriptor is higher than 5 to 10, it is highly correlated with one or more of the other descriptors. If the VIF value is approximately one, the multicollinearity is not a problem statistically.[28] Our analysis shown in Table 1 indicates that the five chosen descriptors could be viewed as independent of each other since the VIF values for all of the descriptors are approximately one. 
To further analyze if the descriptor with the largest standardized coefficient, which is (1) electrical conductivity of host element, has the highest impact on the effective charge, the Wald test is performed. The Wald test is a parametric statistical test for the joint significance of multiple descriptors[28] and returns a p-value for a given hypothesis about the equality of coefficients. It is a stricter statistical test than simply assuming the descriptors with the largest coefficients are the most important. The hypothesis of each Wald test is set as follows: the coefficient of descriptor (1), the electrical conductivity of host element, is equal to the coefficient of a given other descriptor. This gives five Wald test p-values, which are given in Table 1 of the main text. The p-values for the other descriptors are all less than 0.05, suggesting they have coefficients that are statistically meaningful compared with the coefficient for descriptor (1).



Comparison between the observed K,  with the predicted ones
	The present ML model for the z* is equal to = a1 × Electrical conductivity (H) + a2 × Electrical conductivity (I) + a3 × Column of periodic table (D) + a4 × Electronegativity (D) + a5 × # of p valence e- (M) + intercept. If we map onto Eq. (2) shown in the main text and reformulate the ML model, the present ML model simulated the effective charge at the homologous temperature (T*) of 0.9 can be written in the form as Eq. (S2):

Where i is one of descriptors (2-5) (i.e., not the electrical conductivity), Xi and ai are the descriptors and their coefficients, respectively,  is the coefficient of Electrical conductivity () (i.e. -68.51  when descriptors were not standardized),  is the electrical conductivity of the host at T = 298K,  is the zd predicted by the present ML model,  is the K predicted by the present ML model, and  is the resistivity of the host at the homologous temperature of 0.9. In this scenario, we have the following relations, as shown in Eq. (S3):

[bookmark: _GoBack]The resistivity at any given temperature  can be approximately calculated by using Eq. (S4):

where  is the resistivity at 298K,  is the temperature coefficient, and  is the temperature difference from 298K. Table S1 lists the information including the observed z*, resistivity at 298K ((T=298K)), absolute temperature at the homologous temperature of 0.9 (T(T*=0.9)), temperature difference (), temperature coefficient (), and resistivity at the homologous of 0.9 ((T*=0.9)) of the systems in our data set the have experimentally-measured K and zd values. Table S2 shows the comparison between the experimentally-measured K, zd with the predicted ones.
	K is expected to be a system-dependent quantity, but the present model returned a constant coefficient a1, which leads to a very restricted model for the system dependence of predicted K values. To see if the present model can be modified to better capture the system dependence of K, we tried to expand K to its first order and reformulated Eq. (S2) to be as Eq. (S5):

where bi is the coefficient of a given descriptor Xi. This form follows from representing the coefficient of electrical conductivity with the flexible form ()). We used the Eq. (S5) to rerun the SFS to obtain the ) by freezing the first to the fifth descriptors as the same ones we obtained in the present ML model. 5-fold CV test was performed to evaluate the fitting result. None of the additional descriptors added in Eq. (S5) were found to improve the final model shown in the main text of this work.




Table S1. Parameters used in calculating , and 
	Impurity
	Host
	Observed z* 
	(T=298K) 
()
	T(T*=0.9)
(K)
	
(K)
	
(1/K)
	(T*=0.9) 
()

	Ag
	Ag
	-8.3
	1.60
	1111.44
	813.44
	0.0038
	6.5

	Al
	Al
	-30
	2.65
	840.12
	542.12
	0.0039
	8.26

	Zn
	Al
	-33.9
	2.65
	840.12
	542.12
	0.0039
	8.26

	Au
	Au
	-9
	2.05
	1203.6
	905.6
	0.0034
	8.36

	Cd
	Cd
	-5.1
	6.80
	534.8
	236.8
	0.067
	13.25

	Cu
	Cu
	-5.5
	1.65
	1221.99
	923.99
	0.00404
	7.8

	Li
	Li
	-2.5
	8.55
	408.32
	110.32
	0.006
	14.2

	Na
	Na
	-3.3
	4.98
	333.78
	35.78
	0.023
	9.07

	Pb
	Pb
	-16.6
	20.83
	540.55
	242.55
	0.0039
	40.54

	Zn
	Pb
	0.2
	20.83
	540.55
	242.55
	0.0039
	40.54

	Sn
	Sn
	-18
	11.49
	454.57
	156.57
	0.0045
	19.59

	Zn
	Zn
	-4.3
	5.92
	623.41
	325.41
	0.0037
	13.04



Table S2. Comparison between the observed K,  with the predicted ones
	Impurity
	Host
	#Observed K
()
	&Observed zd
	Predicted K
()
	Predicted zd

	Ag
	Ag
	-62.5
	-162.5
	
	1.31
	16.68
	
	-278.4
	27.11

	Al
	Al
	-38.5
	-49
	
	-25.34
	-24.07
	
	-211.93
	7.8

	Zn
	Al
	-51
	
	
	-27.73
	
	
	-211.93
	-3.02

	Au
	Au
	-140
	-325
	
	7.75
	29.88
	
	-277.58
	21.7

	Cd
	Cd
	-50
	
	
	-4.66
	
	
	-132.51
	8.61

	Cu
	Cu
	-10
	-27.5
	-165
	-4.22
	-1.97
	15.66
	-322.08
	26.26

	Li
	Li
	-31
	
	
	-0.32
	
	
	-113.09
	7.46

	Na
	Na
	-22
	
	
	-0.87
	
	
	-124.06
	10.68

	Pb
	Pb
	-500
	
	
	-4.27
	
	
	-132.42
	-14.47

	Zn
	Pb
	-30
	
	
	0.94
	
	
	-132.42
	4.77

	Sn
	Sn
	-600
	-780
	
	12.62
	21.81
	
	-116
	-12.97

	Zn
	Zn
	-40
	
	
	-1.23
	
	
	-149.98
	9.45


# The observed K values are taken from Ref. [30].
& The observed  values are derived through Eq. (2) shown in the main text using the K value.


Leave-out element CV test
To examine the predictive ability of the model to systems with elements not in the database, a LO element-group CV test was performed, where groups consisting of compositions with an instance of each element were left out. Figure S4 is the histogram of the standard deviation of the validation sub-dataset for the LO element-group test. The filled black bar chart and the filled red circle scatter plot shown in Fig. S5 are the 5-fold CV average RMSE/σ over 20 iterations and the corresponding R2 value, respectively. The horizontal axis in Fig. S5 is the given element left out from the training sub-dataset. All of the RMSE/σ values for the model were less than 0.5 and the R2 values were all higher than 0.75. This suggests that the five descriptors are still able to give some predictive ability of the remaining systems even when some are excluded from the training set. 
[image: ]
Figure S4. Standard deviation of the validation sub-dataset when LO element-group CV test.

Randomized test
To test if the physical correlation of the present model is real, and not just an artifact of fitting numerical noise, we performed what we call a randomized test. A randomized test consists of randomly associating each effective charge with a given descriptor, but not the correct descriptor for that effective charge. In this way, the randomized test purposely removes any potential physical relationship between the effective charge and the descriptors for a given material. The empty black bar chart and the empty red circle scattering plot shown in Fig. S5 are the 5-fold CV average RMSE/σ over 20 iterations and the corresponding R2 value when performing the randomized test, respectively. The randomized test is performed for 20 iterations and every time the five descriptors are re-selected by the SFS-algorithm. Therefore, the randomized results shown in Fig. S5 is the average value over the 20 iterations. All the RMSE/σ values in the randomized test are higher than the one without randomized test and the values are close to 1.00. The LO-Al-group has a value ca. 1012, which indicates a numerical problem. The R2 values of the 5-fold CV for randomized test result are all negative values, which indicates that the model built by the randomized test has very poor predictive ability. These results indicate that the descriptors used in our ML model to predict effective charge contain real physics, and the good correlations observed in this work are not the product of just fitting numerical noise.

[image: ]
Figure S5. The RMSE/σ and R-squared (R2) value for the model.


Exploration of effective charge of impurities across the periodic table
	Table S3 and S4 shows predictions of the effective charge and zd of impurities from across the periodic table in 6 different hosts, e.g., Al, Ag, Au, Co, Cu, and Sn, respectively. These hosts were chosen because they are commonly-used alloy systems in electronic products. The exact predictions are also available on Figshare with DOI 10.6084/m9.figshare.7175072 (see data section in the main text).



Table S3. An exploration for the effective charge of unknown impurities across the periodic table in 6 different hosts. The exact predictions are also available on Figshare with DOI 10.6084/m9.figshare.7175072
	Impurity
	Predicted effective charge

	
	Ag Host
	Al Host
	Au Host
	Co Host
	Cu Host
	Sn Host

	P
	-74.58
	-43.03
	-65.17
	-60.97
	-72.77
	-29.49

	Br
	-86.5
	-54.96
	-92.09
	-72.9
	-84.7
	-41.41

	S
	-80.44
	-48.89
	-86.02
	-66.83
	-78.63
	-35.34

	I
	-92.93
	-61.38
	-98.51
	-79.32
	-91.12
	-47.84

	Ge
	-64.23
	-32.68
	-47.11
	-50.62
	-62.42
	-19.13

	Te
	-90.71
	-59.17
	-77.45
	-77.1
	-88.9
	-45.62

	Si
	-65.3
	-35.04
	-44.76
	-52.97
	-64.77
	-18.92

	Tc
	-53.87
	-46.27
	-33.33
	-18.89
	-53.35
	-41.48

	Mn
	-46.26
	-51.08
	-25.72
	-12.14
	-45.74
	-33.87

	Bi
	-78.01
	-46.47
	-61.32
	-64.4
	-76.2
	-32.92

	Sc
	-64.62
	-69.43
	-44.08
	-30.49
	-64.09
	-52.22

	Ga
	-48.74
	-22.34
	-28.2
	-37.28
	-48.22
	-13.69

	Y
	-61.55
	-66.36
	-41.01
	-27.43
	-61.02
	-49.15

	Zr
	-58.12
	-62.94
	-37.58
	-24
	-57.6
	-45.73

	Ti
	-62.55
	-67.37
	-42.01
	-28.43
	-62.03
	-50.16

	Sb
	-76.97
	-45.43
	-61.57
	-63.36
	-75.16
	-31.88

	Ba
	-59.91
	-64.73
	-39.37
	-25.79
	-59.39
	-47.52

	In
	-47.73
	-22.61
	-27.19
	-36.26
	-47.2
	-12.68

	Hf
	-57.23
	-62.04
	-36.68
	-23.1
	-56.7
	-44.83

	As
	-73.91
	-42.36
	-64.07
	-60.3
	-72.1
	-28.81

	V
	-58.49
	-62.45
	-37.95
	-24.37
	-57.96
	-46.09

	Pb
	-56.26
	-24.71
	-52.85
	-42.65
	-54.45
	-11.16

	Sr
	-60.69
	-65.5
	-40.15
	-26.56
	-60.16
	-48.29

	Cs
	-62.85
	-67.67
	-42.31
	-28.73
	-62.33
	-50.46

	Tl
	-43.79
	-25.52
	-23.25
	-32.32
	-43.27
	-8.74

	Re
	-52.52
	-44.92
	-31.98
	-17.54
	-52
	-40.13

	Nb
	-57.24
	-62.06
	-36.7
	-23.12
	-56.72
	-44.84

	Cr
	-52.56
	-55.23
	-32.02
	-18.44
	-52.03
	-40.16

	Se
	-79.21
	-47.67
	-84.8
	-65.61
	-77.41
	-34.12

	Ta
	-54.75
	-59.57
	-34.21
	-20.63
	-54.23
	-42.35

	Sn
	-63.27
	-31.73
	-44.02
	-49.66
	-61.46
	-18.18

	Pt
	-27.84
	-18.95
	-22.29
	-2.9
	-26.03
	-16.73

	Pd
	-29.41
	-20.52
	-20.44
	-4.48
	-27.61
	-18.3

	Fe
	-44.1
	-39.5
	-23.56
	-9.98
	-43.58
	-31.71

	Os
	-40.21
	-31.32
	-31.23
	-3.94
	-38.4
	-29.1

	Ni
	-33.7
	-25.66
	-13.16
	-9.62
	-32.74
	-21.3

	Cd
	-28.96
	-19.02
	-8.42
	-17.49
	-28.44
	-5.24

	Ru
	-39.6
	-30.71
	-30.62
	-3.34
	-37.79
	-28.49

	K
	-60.91
	-65.73
	-40.37
	-26.79
	-60.39
	-48.51

	Zn
	-27.59
	-19.37
	-7.05
	-16.13
	-27.07
	-3.87

	Mo
	-51.23
	-42.34
	-40.54
	-14.96
	-49.42
	-40.11

	Co
	-37.95
	-31.2
	-17.41
	-3.83
	-37.42
	-25.55

	W
	-46.73
	-37.84
	-44.61
	-10.47
	-44.92
	-35.62

	Na
	-62.4
	-67.22
	-41.86
	-28.28
	-61.88
	-50.01

	Ir
	-32.45
	-23.56
	-23.47
	3.82
	-30.64
	-21.34

	Mg
	-64.34
	-69.16
	-43.8
	-30.22
	-63.82
	-51.95

	Rh
	-30.34
	-21.45
	-24.79
	5.93
	-28.53
	-19.23

	Ca
	-55.63
	-60.45
	-35.09
	-21.51
	-55.11
	-43.23

	Al
	-36.1
	-18.26
	-15.56
	-24.63
	-35.58
	-1.05

	Rb
	-53.6
	-58.41
	-33.06
	-19.47
	-53.07
	-41.2

	Au
	-7.43
	1.46
	-13.02
	6.18
	-5.62
	3.68

	Cu
	-17.08
	-9.48
	3.46
	-4.76
	-16.56
	-4.69

	Ag
	-17.21
	-8.32
	3.33
	-3.6
	-15.4
	-4.82





Table S4. An exploration for the zd of unknown impurities across the periodic table in 6 different hosts. The exact predictions are also available on Figshare with DOI 10.6084/m9.figshare.7175072
	Impurity
	Predicted zd

	
	Ag host
	Al host
	Au host
	Co host
	Cu host
	Sn host

	Ag
	27.11
	19.9
	47.71
	20.42
	28.12
	-3.72

	Al
	10.23
	7.8
	30.83
	0.17
	9.22
	5.79

	As
	-32.79
	-13.61
	-29.08
	-39.48
	-31.78
	-21.24

	Au
	42.3
	35.09
	21.7
	35.61
	43.31
	9.45

	Ba
	1.48
	-27.34
	22.08
	8.16
	0.46
	-29.35

	Bi
	-39.31
	-20.13
	-24.79
	-46
	-38.3
	-27.76

	Br
	-35.56
	-16.38
	-56.16
	-42.25
	-34.55
	-24.01

	Ca
	8.7
	-20.12
	29.3
	15.39
	7.69
	-22.12

	Cd
	12.53
	-2.51
	33.13
	2.46
	11.51
	-9.92

	Cl
	-28.8
	-9.62
	-49.41
	-35.49
	-27.79
	-17.25

	Co
	3.15
	-7.43
	23.75
	9.84
	2.14
	-27.67

	Cr
	-5.82
	-31.26
	14.78
	0.87
	-6.83
	-36.65

	Cs
	1.63
	-27.19
	22.23
	8.31
	0.61
	-29.2

	Cu
	27.28
	18.05
	47.88
	18.56
	26.26
	-3.55

	Fe
	-1.92
	-15.88
	18.68
	4.77
	-2.93
	-32.75

	Ga
	-10.3
	0.78
	10.3
	-20.37
	-11.32
	-14.74

	Ge
	-26.17
	-6.99
	-10.97
	-32.86
	-25.16
	-14.62

	Hf
	-3.76
	-32.59
	16.84
	2.92
	-4.78
	-34.59

	I
	-45.69
	-26.51
	-66.29
	-52.38
	-44.68
	-34.14

	In
	-8.67
	0.38
	11.93
	-18.74
	-9.69
	-13.11

	Ir
	11.89
	4.68
	14.25
	21.95
	12.9
	-20.97

	K
	4.87
	-23.95
	25.48
	11.56
	3.86
	-25.95

	Mg
	-5.19
	-34.01
	15.42
	1.5
	-6.2
	-36.01

	Mn
	-0.76
	-29.58
	19.84
	5.93
	-1.77
	-31.58

	Mo
	-3.56
	-10.77
	1.5
	6.5
	-2.55
	-36.42

	Na
	2.58
	-26.24
	23.18
	9.27
	1.57
	-28.25

	Nb
	-8.48
	-37.3
	12.12
	-1.79
	-9.49
	-39.31

	Ni
	5.06
	-3.5
	25.66
	5.4
	4.72
	-25.77

	Os
	4.24
	-2.96
	6.61
	14.31
	5.26
	-28.61

	P
	-33.92
	-14.73
	-30.88
	-40.6
	-32.9
	-22.37

	Pb
	-13.52
	5.66
	-19.94
	-20.21
	-12.51
	-1.97

	Pd
	11.74
	4.53
	14.1
	13.43
	12.75
	-21.12

	Pt
	14.21
	7
	11.17
	15.9
	15.22
	-18.64

	Rb
	16.92
	-11.9
	37.53
	23.61
	15.91
	-13.9

	Re
	-10.54
	-19.78
	10.06
	-2.51
	-11.56
	-41.37

	Rh
	15.24
	8.03
	12.2
	25.3
	16.25
	-17.61

	Ru
	5.24
	-1.96
	7.61
	15.31
	6.25
	-27.61

	S
	-34.57
	-15.39
	-55.17
	-41.26
	-33.56
	-23.02

	Sb
	-37.65
	-18.46
	-25.15
	-44.33
	-36.63
	-26.1

	Sc
	-10.71
	-39.53
	9.89
	-4.02
	-11.72
	-41.53

	Se
	-32.51
	-13.33
	-53.11
	-39.2
	-31.5
	-20.96

	Si
	-27.86
	-10.7
	-7.26
	-36.57
	-28.87
	-14.28

	Sn
	-24.52
	-5.34
	-5.94
	-31.21
	-23.51
	-12.97

	Sr
	0.3
	-28.53
	20.9
	6.98
	-0.72
	-30.53

	Ta
	-4.53
	-33.35
	16.07
	2.16
	-5.54
	-35.35

	Tc
	-12.77
	-22
	7.83
	-4.73
	-13.78
	-43.6

	Te
	-50.78
	-31.6
	-41.66
	-57.47
	-49.77
	-39.23

	Ti
	-12.18
	-41
	8.43
	-5.49
	-13.19
	-43

	Tl
	-2.43
	-4.18
	18.18
	-12.49
	-3.44
	-6.86

	V
	-10.49
	-37.96
	10.11
	-3.81
	-11.51
	-41.32

	W
	3.54
	-3.67
	-4.91
	13.6
	4.55
	-29.32

	Y
	-5.86
	-34.69
	14.74
	0.82
	-6.88
	-36.69

	Zn
	14.72
	-3.02
	35.33
	4.66
	13.71
	-7.73

	Zr
	-5.2
	-34.02
	15.4
	1.49
	-6.21
	-36.03





Reference
1.	P.S. Ho and T. Kwok: Electromigration in metals. Rep. Prog. Phys. 52, 301 (1989).
2.	J. Shi and H.B. Huntington: Electromigration of gold and silver in single crystal tin. J. Phys. Chem. Solids 48, 693 (1987).
3.	H.R. Patil and H.B. Huntington: Electromigration and associated void formation in silver. J. Phys. Chem. Solids 31, 463 (1970).
4.	D.A. Golopentia and H.B. Huntington: A study of electromigration of nickel in lead. J. Phys. Chem. Solids 39, 975 (1978).
5.	G.A. Sullivan: Search for reversal in copper electromigration. J. Phys. Chem. Solids 28, 347 (1967).
6.	A.R. Grone: Current-induced marker motion in copper. J. Phys. Chem. Solids 20, 88 (1961).
7.	A. Lodding: Current induced motion of lattice defects in indium metal. J. Phys. Chem. Solids 26, 143 (1965).
8.	H.B. Huntington: 6 - Electromigration in Metals, in Diffusion in Solids, edited by A. S. Nowick and J. J. Burton (Academic Press1975), pp. 303.
9.	A. Gangulee and F.M. D'Heurle: Anomalous large grains in alloyed aluminum thin films II. Electromigration and diffusion in thin films with very large grains. Thin Solid Films 16, 227 (1973).
10.	H.M. Gilder and D. Lazarus: Effect of High Electronic Current Density on the Motion of Au195 and Sb125 in Gold. Phys. Rev. 145, 507 (1966).
11.	K.L. Tai, P.H. Sun and M. Ohring: Lateral self-diffusion and electromigration in thin metal films. Thin Solid Films 25, 343 (1975).
12.	M. Hsieh, H. Huntington and R. Jeffery: Electromigration of Au and Ag in Pb. Cryst. Lattice Defects 7, 9 (1977).
13.	C.Y. Liu, C. Chen and K.N. Tu: Electromigration in Sn–Pb solder strips as a function of alloy composition. J. Appl. Phys. 88, 5703 (2000).
14.	D.C. Yeh and H.B. Huntington: Extreme Fast-Diffusion System: Nickel in Single-Crystal Tin. Phys. Rev. Lett. 53, 1469 (1984).
15.	Y. Serruys: Electromigration du niobium-95 et du tantale-182 dans le niobium. Scripta Metallurgica 16, 365 (1982).
16.	J. Wohlgemuth: Electromigration in polycrystalline and single crystal magnesium. J. Phys. Chem. Solids 36, 1025 (1975).
17.	P.S. Ho: Solute Effects on Electromigration. Physical Review B 8, 4534 (1973).
18.	A. Gangulee and F.M. d'Heurle: Mass transport during electromigration in aluminum-magnesium thin films. Thin Solid Films 25, 317 (1975).
19.	H. Nakajima and H.B. Huntington: Electromigration of cadmiun in lead. J. Phys. Chem. Solids 42, 171 (1981).
20.	N. Van Doan: Effet de valence en electromigration dans l'argent. J. Phys. Chem. Solids 31, 2079 (1970).
21.	A.H. Verbruggen and R. Griessen: Experimental evidence for nonintegral direct-force valence in electromigration. Physical Review B 32, 1426 (1985).
22.	P. Dayal and L.S. Darken: Migration of carbon in steel under the influence of direct current. JOM 2, 1156 (1950).
23.	R.E. Einziger and H.B. Huntington: Electromigration and permeation of hydrogen and deuterium in silver. Journal of Physics and Chemistry of Solids 35, 1563 (1974).
24.	V. Sidorenko, R. Kripyakevich and B. Kachmar: Fiz.-Khim. Mekhan. Mater. 6, 187 (1970).
25.	J.F. Marech, amp and eacute: C. R. Acad. Sci. Paris.  281, 449 (1975).
26.	L. Ward, A. Agrawal, A. Choudhary and C. Wolverton: A general-purpose machine learning framework for predicting properties of inorganic materials. npj Comput. Mater. 2, 16028 (2016).
27.	S. Seabold and J. Perktold: Statsmodels: Econometric and statistical modeling with python, in Proceedings of the 9th Python in Science Conference (SciPy society Austin2010), p. 61.
28.	J. Fox: Applied regression analysis and generalized linear models,  (Sage Publications2015).
29.	J.P. Dekker and A. Lodder: Calculated electromigration wind force in face-centered-cubic and body-centered-cubic metals. J. Appl. Phys. 84, 1958 (1998).
30.	R.S. Sorbello: Theory of electromigration. Solid State Physics 51, 159 (1997).




1

image5.png

image1.png

image2.png

image3.png

image4.png

