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INTRODUCTION
Quartz tuning forks (QTFs) are commonly used in several areas such as; time-frequency standard systems, atomic force microscopy sensor, gas pressure and density determination studies etc [28]–[33].  Quartz prongs of the QTF transducer provide piezoelectric characteristic to those types of sensors given in Figure S1. A piezoelectric substrate allows the mechanical excitation of the QTF to be replaced by an electrical excitation [34]. Due to this fact, an increased mass load cause to a change in the measured frequency as a response. In other words, we benefit from mass sensitive nature of QTF transducers to observe the aging or detachment caused mass loss in terms of the frequency shift. Besides the high mechanical “Quality Factor” (Q) around 103-105 of tuning fork transducers allows to reach up to pico gram level detection [35]. The utilization of QTF prongs as a carrier for the biological recognition element is the main motivation of this research. However, as mentioned above, direct binding of amine groups has a stability problem and our approach was shifted into a bilayer film formation including a stable hydrocarbon film then an amino group-containing functional film.

Figure S1: Schematic illustration and SEM image of QTF transducer. 

Bi-layer Film Modification
A hydrocarbon-based precursor; n-heptane (hep) was selected for the creation of stable pre-coating layer onto substrates’ and this step was followed by secondary layer formation based on amine-rich precursor, ethylenediamine (EDA), in turn. Contact angle measurements and frequency shift studies were carried out for detect the best condition of these PPTFs. First step was completed with choosing the single out condition from 16 different q-hep-PPTFs were given Table S1. On the other hand, single layer coating samples which we mentioned as q-EDA-PPTFs and bi-layer coating samples q-hep-EDA-PPTFs samples examined for 30 days, just like as q-hep-PPTFs. Again, we had determined the best samples with using contact angle measurements and frequency shift results.

Frequency Shift Measurements of PPTFs in aqueous medium 
In the final stage, the bi-layer films over the QTF prongs were prepared by using the heptane as primary stable film then EDA film. Those amine-rich prongs were immersed in to the same aqueous PBS solution and waited for 1 minute. The response of controller on the basis of frequency shift showed that, there were no significant changes in the base frequencies were given Table S2. It means that, a bi-layer formation of plasma films of heptane then EDA over the QTF prongs has a quite stable behavior in liquid environment.

AFM Analysis of PPTFs
In this study AFM analysis (Figure S2) showed that, with decreasing the plasma power from 75W to 25 W, roughness values increase from 1,65 to 1,04 as given Table S3, respectively. The reason of this result might happen because of the plasma power parameters. Which means; dependent of the plasma power value, surface mobility and plasma density difference will be occur. Thus, higher plasma power means, higher plasma density as well and this power can break monomers in the gas phase.  On the other hand, it is possible to interpret the relation of roughness values with hydrophilic/hydrophobic characteristics of selected PPTFs. With the increasing of the roughness values at these plasma powers are consequently considered to provide increasing hydrophobic characteristic of the PPTF surface [38].

Figure S2: (a) q-hep, (b) q-EDA, (c) q-hep-EDA PPTF 3D AFM micrography images.
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FIGURE LIST:
Figure S1: Schematic illustration and SEM image of QTF transducer.
Figure S2: (a) q-hep, (b) q-EDA, (c) q-hep-EDA PPTF 3D AFM micrography images.
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Table S1: Low pressure plasma conditions that used during plasma polymerization process.
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Table S2: Frequency shift measurements in aqueous medium of q-hep-EDA-PPTFs (n=15). 
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Table S3: Roughness and thickness parameters of PPTFs. 




image1.tif
Precursor n-heptane ‘ Ethylenediamine
Plasma Power (Watt) 25,50,75,100

Exposure Time (min) 1,2,5,10 ‘ 1,5,10
Pressure (mbar) 0.14

Device

Pico, Diener Electronic GmbH, Germany

Frequency (MHz)

13.56
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Plasma Power Exposure Time Frequency Shift
w) (min) (Hz2)
25 10 6+1,32
50 10 4£1,01
75 1 7+1,06
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Roughness

Sample Plasma Exposure Film Thickness
(Average)
Condition Power (W) Time(min) (nm)
(nm)
HEP+EDA 25 10 163 1,04
HEP+EDA 50 10 170 1,31
HEP+EDA 75 1 130 1,65





