Supporting Information

Impact of Angular Deviation from Coincidence Site Lattice Grain Boundaries on Hydrogen Segregation and Diffusion in α-iron Mohamed H. Hamza¹, Mohamed A. Hendy², Tarek M. Hatem^{2*}, and Jaafar A. El-Awady¹ ¹Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218, USA ²Centre for Simulation Innovation and Advanced Manufacturing, the British University in Egypt, Cairo 11837, Egypt ^{*}Corresponding author, e-mail address: tarek.hatem@bue.edu.eg

1

FIG. S1: The H-segregation energy as a function of position from the GB for (a) ideal $\Sigma 3$ (111) [110] GB; (b) $\phi = 3^{\circ}$; (c) $\phi = 5^{\circ}$; (d) $\phi = 7^{\circ}$; and (e) $\phi = 9^{\circ}$. The symbols represent the average values based on statistical analysis and mean estimation with a 95% confidence interval, and the error bars represent the standard deviation.

FIG. S2: The H-segregation energy within a 2 Å layer encompassing the GB as a function of the deviation angle from the ideal $\Sigma 3$ (111) [110] GB. The symbols represent the average values based on statistical analysis and mean estimation with a 95% confidence interval, the error bars represent the standard deviation, and the solid line represent the best curve fit.

FIG. S3: The free surface H-segregation energy in both grains and as a function of deviation angle from the $\Sigma 3$ (111) ideal symmetry plane. The symbols represent the average values based on statistical analysis and mean estimation with a 95% confidence interval, the error bars represent the standard deviation, and the solid line represent the Akima interpolation fit.