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Computational Methods 

Calculations on molecules and atoms were performed using the computational chemistry program 

package GAUSSIAN 16.[1] The PBE0 hybrid functional by Adamo and Barone with 25% exact 

exchange[2, 3] was used together with Dunning’s correlation consistent polarized valence triple-zeta 

basis set[4-8] (cc-pVTZ) for the comparative calculations of transition metal (TM) and non-TM 

complexes as well as the water molecule (ions) and hydronium ion. The PBE0 hybrid functional was 

found to reproduce wave function-based post-Hartree Fock results best at reasonable computational 

cost (see the following section Method Tests in the Supplementary Material), while the Bader charges 

and O-H stretch frequencies were found to be well-converged at the triple-zeta basis set level (see 

following section Basis Set Test in the Supplementary Material). The integral equation formalism 

variant of the polarizable continuum model[9-11] (IEFPCM) as implemented in GAUSSIAN 16 was used 
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to simulate the influence of outer water solvation shells and disordered solvent. For all calculations 

performed in this work, the unrestricted schemes of the corresponding methods were employed to 

ensure the comparability of the results.[12, 13] 

 The structures of the metal aquo complexes were relaxed via a Berny algorithm using an 

energy-represented direct inversion in the iterative subspace[14] (GEDIIS) with a convergence threshold 

on forces of 2∙10-6 Eh/a0. The [M(H2O)6]n+ (M = V, Mn, Fe, Cr, Li, Be, Al) complexes were initialized 

in TH symmetry as well as in a distorted configuration of C1 symmetry to scan along larger parts of the 

potential energy surface. Grid-based Bader charge analyses as implemented in the BADER v.0.95a 

code[15-18] were performed on respective cubes with resolutions of approximately 900 pts/a03 (approx. 

9.5 pts/a0 in each principal direction), which was found to be well-converged (see following section 

Bader Grid Test in Supplementary Material). The formation energy Ef of the [M(H2O)6]n+ complexes 

was computed as energy difference between the solvated complex ion and a Mn+ ion in the gas phase 

(vacuum) plus six solvated water molecules: 

 . (1) 

 All graphs in the main text and Supplementary Material were made with the program 

GNUPLOT version 5.2.[19] 

  

Method Tests 

Since post-Hartree Fock (HF[20-22]) methods like Møller-Plesset perturbation theory to the 

second order[23-28] (MP2) and coupled-cluster singles and doubles[29-32] (CCSD) scale as O(N5) and 

O(N6), respectively, while DFT hybrid functionals at least maintain an O(N4) scaling, it is desirable to 

utilize a sufficiently accurate DFT functional for geometry relaxations, computation of vibrational 

frequencies and Bader charge analyses. While the difference in scaling between hybrid DFT and MP2 

does not seem to be overwhelming, the use of a sufficiently converged basis sets quickly makes post-
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HF calculations unfeasible for the type of analysis done within this work. In order to find an 

appropriate DFT functional, tests on vanadium complexes were performed. First, the charge density 

remainders on the V center in different [V(H2O)6]n+ complexes with n = 1,…,5 were compared among 

DFT and post-HF methods, namely the generalized-gradient approximation (GGA) functional PBE,[33, 

34] the hybrid functionals PBE0[2, 3] and B3LYP,[35-37] as well as MP2 and CCSD. The results are shown 

in Fig. S1. For Bader charge analyses with MP2 and CCSD, the generalized densities corresponding to 

second-order and coupled-cluster energies, respectively, were used. All calculations were performed 

with the correlation consistent polarized valence double-zeta basis set by Dunning[4-8] (cc-pVDZ) and 

within the IEFPCM. The densities were generated in single-point calculations, due to the high cost of 

CCSD structure relaxations, using the corresponding PBE0 minimum energy geometry for all methods.  

 
FIG. S1. Bader charge remainder on the V center for different charges n of the [V(H2O)6]n+ complexes and with 

different methods: CCSD (blue), MP2 (red), PBE0 (green), B3LYP (brown), PBE (violet). 

 
The deviations of MP2, B3LYP and PBE minimum energy geometry at this basis set precision do not 

exceed 2% on interatomic distances and angles, a range which was found to cause only negligible 
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changes of the central ion Bader charge.   

As can be seen in Fig. S1, PBE0 in general delivers Bader charge results closest to the post-HF 

benchmarks. Besides Bader charges, vibrational frequencies, specifically, O-H stretch frequencies are 

of concern in this investigation. In Fig. S2, plots of H2O ligand Bader charges versus average O-H 

stretch frequencies (after structure relaxation) as obtained with HF, MP2, PBE, B3LYP, and PBE0 and 

a cc-pVDZ basis set/IEFPCM are compared. For these tests, MP2 was used as the benchmark due to a 

high cost of CCSD. 

 

FIG. S2. Average O-H stretch frequency versus average Bader charge of the water ligands in [V(H2O)6]n+ 

complexes with n=1...5 using different methods: HF (red, crosses), MP2 (blue, tilted crosses), PBE0 (green, 

asterisks), B3LYP (brown, empty squares), PBE (violet, filled squares). Increasing charges of the complexes 

cause an increasing Bader charge on the water ligand, i.e. n is increasing from left to right for each method. 

 

The largest deviations from the MP2 benchmark can be observed with HF, significantly 

overestimating O-H stretch frequencies, while underestimating the charge transfer from the water 
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ligands to the transition metal ion. The PBE GGA functional on the other hand underestimates the O-H 

bond strength and overestimates the charge transfer. Admixture of exact exchange largely corrects for 

the GGA deviation, leading to a good agreement between MP2 and PBE0/B3LYP values, with PBE0 

having the smaller deviations on average.  

 

Basis Set Test 

In Fig. S3 the Bader charge remainder on the metal center and the average O-H stretch 

frequencies (symmetric and asymmetric) of the six water ligands in relaxed [V(H2O)6]3+ complexes is 

plotted against the size of the employed cc-pVnZ basis set[4-8] (where half-integer values denote the 

corresponding augmented basis sets). 

 

FIG. S3. Bader charge remainder (blue, left axis) on V in [V(H2O)6]3+ and average O-H stretch frequencies of the 

water ligands (red, right axis) in dependence of the chosen basis set. The index n denotes the size of the cc-pVnZ 

basis set, with n=2.0 corresponding to cc-pVDZ, n=3.0 to cc-pVTZ, n=4.0 to cc-pVQZ, and half-integer 

numbers to the augmented basis sets (aug-cc-pVDZ and aug-cc-pVTZ). 
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Calculations were carried out with PBE0 and the IEFPCM model as described in the section 

Computational Methods above. The [V(H2O)6]3+ complex was chosen as a model system for the basis 

set comparison, since it is a well-studied, observable complex, which occurs in aqueous V(III) 

solutions. As can be seen from Fig. S3, the relative differences among the results obtained with basis 

sets with n>2 are significantly smaller than the differences to cc-pVDZ. Since this investigation is 

dealing mainly with cationic complexes, the inclusion of diffuse functions seems not justified, and cc-

pVTZ was chosen as reasonably converged basis set for the computations described in the main text. 

 

Bader Grid Test 

 In order to ensure a sufficient precision of the grid-based Bader charge analysis, its dependence 

on the resolution of the underlying electron density was investigated. Fig. S4 shows the Bader charge 

remainder versus resolution (in points per cubic Bohr) of the corresponding density data for a 

[V(H2O)6]3+ complex with PBE0/cc-pVTZ and IEFPCM.  

 

FIG. S4. Bader charge remainder on V in the [V(H2O)6]3+ complex versus the resolution (points per cubic Bohr) 

of the electronic density used to determine the Bader charges of the atoms. 
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Convergence occurs quickly and the resulting Bader charge remainder does not change significantly for 

resolutions finer than ~900 pts/a03, which was deemed a reliable choice in this investigation.  

 

Polarizable Continuum Model Versus Vacuum 

 For the purpose of estimating the influence of the IEFPCM on the results and to ensure that the 

introduced perturbation by the solvent does not influence the overall conclusion of this investigation by 

unreasonably large distortions, the O-H stretch frequencies versus H2O Bader charges for different 

[V(H2O)6]n+ complexes with n = 1,…,5 were compared between vacuum and within the IEFPCM, as 

reported in Fig. S5.  

 
FIG. S5. Average O-H stretch frequency versus average Bader charge of the water ligands in [V(H2O)6]n+ 

complexes with n=1...5 using a polarizable continuum model (PCM; blue, filled squares) and in vacuum (red, 

empty squares). Increasing charges of the complexes cause an increasing Bader charge on the water ligand, i.e. n 

is increasing from left to right in each case. The average O-H stretch frequency of the H3O+ cation in PCM (blue) 

and vacuum (red) are indicated by horizontal lines. 
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 While the occurring deviations are small for hexaaqua vanadium(I) and vanadium(II) 

complexes, frequencies for higher oxidation states deviate up to 7% from each other and Bader charges 

up to 5%. However, comparison with the average O-H stretch frequency of the H3O+ hydronium ion 

reveals that in both cases the average O-H stretch frequencies for V(IV) and V(V) complexes fall 

below this value (see red and blue horizontal lines in Fig. S5), while for V(II) and V(III) complexes the 

O-H bonds are stronger than in the hydronium ion. In the vacuum case, the average stretch frequency 

for the V(I) complex is also slightly higher than the one for the hydronium ion, with a deviation of 

roughly 30 cm-1 (0.6%), while introducing the IEFPCM destabilizes the O-H bonds on average and 

lowers the ligands stretch frequencies below the one of the hydronium ion. 

 

Spin Distributions in Hexaaqua M(II) and M(III) complexes 

  

TABLE SI. Magnetic moments of metal center and water ligands in the investigated hexaaqua M(II) and M(III) 

complexes (M = V, Mn, Fe, Cr). All numbers given in µB. 

Complex Magnetic moment of metal 

[µB] 

Magnetic moment of 

solvation shell [µB] 

[V(H2O)6]2+ +2.93 +0.07 

[V(H2O)6]3+ +1.95 +0.05 

[Mn(H2O)6]2+ +3.81 +0.19 

[Mn(H2O)6]3+ +4.42 +0.58 

[Fe(H2O)6]2+ +3.93 +0.07 

[Fe(H2O)6]3+ +2.90 +0.10 

[Cr(H2O)6]2+ +4.82 +0.18 

[Cr(H2O)6]3+ +3.78 +0.22 

 

To evaluate the distribution of spin magnetic moments between metal and solvation shell, a Bader 
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charge analysis of the spin density of all the investigated [M(H2O)6]2+ and [M(H2O)6]3+ complexes (M 

= V, Mn, Fe, Cr) was performed. The results are listed in Table S1. 
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