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Efrań Hernández–Rivera,∗,† Souma Chowdhury,‡ Shawn P. Coleman,† Payam

Ghassemi,‡ and Mark A. Tschopp†

†U.S. Army Research Laboratory, Weapons and Materials Research Directorate, APG, MD

21005

‡University at Buffalo, Department of Mechanical and Aerospace Engineering, Buffalo, NY

14260

E-mail: efrain.hernandez18.civ@mail.mil

Sensitivity Analysis: A Brief Description

It is often important to understand how uncertainty in input variables (factors) can lead to

uncertainty in model responses (output). Sensitivity analysis (SA) is a statistical technique

for quantifying this relationship. Multiple SA methods have been developed, to include the

Morris method (a one-factor-at-a-time global sensitivity method) and the Sobol method (a

variance-based global sensitivity measure). The Morris method1 employs the use of the so

called elementary effect (EE) which for each i−th factor is given as the finite differentiation

EEi =
f(X1, · · · ,Xi−1,Xi + ∆, · · · ,Xk)− f(X0)

∆
(1)
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where ∆ is a predetermined multiple of 1/(p−1). It should be noted that for a k−dimensional,

the sampling range for each factor is divided into p−levels essential forming a gridded sam-

pling. The Sobol index2 is a variance-based measure of the first-order sensitivity of a given

factor

Si =
Vari

(
EXj 6=i

(Y|Xi)
)

Var(Y)
(2)

where the index is given by the variance of the expected values divided by the total variance.

These indices aim to decompose the variance into attributable to each model variable, i.e.,

how much (percentage wise) does variable Xi contribute to the variance in Y.

An alternative variance-based method is the derivative based global sensitivity measure

(DGSM),3 which is becoming popular among practitioners for sensitivity analysis of high-

dimensional models. The DGSM has links to the Morris factor and Sobol index, but can

outperform these for high-dimensional problem4 and is defined as3–5

Si
DGSM =

∫
Hk

(
∂f(x)

∂xi

)2

dµ(x) = E

[(
∂f(X)

∂Xi

)2
]

(3)

where µ(x) is the distribution of the X independent variables. Each variable sensitivity is

then calculated through numerical integral by quadratures as ∂f/∂Xi is square-integrable.

To implement this approach, python’s Sensitivity Analysis Library in Python (SALib)6 was

adopted. The sensitivities were then calculated through the use of the SALib.analyze.dgsm

module. It should be noted that these are a few of the many SA methods available. Nonethe-

less, the DGSM has been shown to be robust in converging for high-dimensional low sample

size analysis.7

Sampling for the DGSM was carried out by using the SALib.sample.finite diff mod-

ule. This is similar to sampling techniques used for the Morris method, but instead of

changing factors one-at-a-time all factors are changed simultaneously. Then, the domain

around the new sample position is probed. Figure S1 shows a schematic representation of

this sampling mechanics for a 3-dimensional model with five samples. An original parame-
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terization (X0 = (0.5, 0.5, 0.5), blue in Figure S1) and a predetermined ∆ = 0.5 defines the

bounding domain. The first step then is to sample the space around that point by another

predetermined parameter δ, which is represented by the “axes” about X0. Once sampled,

a new sample is randomly generated within the sampling domain and the same exploration

about δ is performed. This process is repeated NT = n ·(D+1) in order to properly calculate

the sensitivity measures.
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Figure S1: Schematic of the sampling scheme used to perform the sensitivity analysis.

Data Scrubbing

As multiple parameterizations resulted in “bad” potentials, e.g., failed convergence, the

resulting dataset required curation. This process needs to be carried our carefully as to not

introduce artificial biases. The resulting dataset, after scrubbing out bad parameterizations

for the B11C
pCBC objectives, is shown in Figure S2 as scatter plots. These show that the

resulting data set is able to capture the expected values (plotted as orange stars) and these

are reasonably normally distributed. It is also clear, as in Figure 4(a), that V and a linearly

correlate, while others are largely uncorrelated.
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Figure S2: Filtering LHS data to remove outliers and failed potentials. (a) distribution
of successful sampled potentials for B11C

pCBC, (b) convex-hull based screening of failed
samples, and (c) box plots of normalized factors with failed samples overlaid (marked as red:
cross for non-convergence and circles for minimization outliers).
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Identifying where H55 fails to converge to a minimized structure could enable a focused

sampling scheme as not all parameters must be sampled under identical conditions, e.g., ±∆.

A visual representation of the highlighted failed potentials is shown in Figure S2(b-c). Due

to the dimensional complexity, a hyperdimensional convex hull analysis was performed to

identify the smallest set of factors that can predict the failed samples, Figure S2(b). In this

manner, the hyperdimensional convex hull could be used to screen samples in undesirable

parts of the design space. This concept could be used for resampling the domain space or as

non-orthogonal bounds for the optimization space as well.

The analysis is as follows. First, the convex hulls were created from the successful samples

for the n-dimensional space. Then, the number of failed samples outside the convex hull is

assessed (each red dot or red cross corresponds to a failed sample). The goal is to compose

a hyperdimensional convex hull that can predict failed samples with as few dimensions as

possible. Each circle around the failed samples represents that it lied outside of the convex

hull (e.g., 5 circles means that it lied outside in 4th, 5th, 6th, 7th, and 8th dimensional

convex hulls). For two dimensions, the ATO46–BON29 plane explains the most failed samples,

two at the bottom left and one at the top right. In other words, within this 2D slice through

our 55-dimensional space, the convex hull created from the successful samples is able to

exclude the most failed samples (in this case, 3 failed samples). For three dimensions, the

ATO46–BON29 plane was retained and all other potential parameters were iterated over to

find the best one. Subsequent dimensions (input variables) were added (retaining the prior

dimensions parameters) until all failed samples were outside of the multi-dimensional convex

hull. A total of 8-dimensions was needed to create a convex hull volume that fully excludes

all failed parameterizations. It should be noted that these are not unique sets and other

parameter combinations could explain failure within the sampled data. A 1-dimensional

equivalent analysis would be to visualize box plots for each input parameter, Figure S2(c).

Clearly, no single parameter can effectively predict whether a sampled parameterization will

fail. In fact, these failed samples are fairly distributed along the sampled volume. Focusing
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on the variables identified by the 2-dimensional convex hull, it is clear that the 1-dimensional

approach is not able to refine search spaces.

Surrogate Modeling of Cohesive Energy

As suggested by the proposed framework, surrogate models could be used to predict molec-

ular statics optimized properties. Here, a two-dimensional surrogate linear model predicting

B11C
pCBC’s cohesive energy was fit to the successful dataset to showcase this approach. An

ordinary least squares regression was used to fit a simple linear model to the dataset XS

U11Cp

coh = β0 +
2∑

j=1

βjXj

where βj is the regression coefficient of parameter−j (with distribution Xj) and β0 is the

intercept. Figure S3(a) shows the resulting response surface overlaid by the scatter data

from the molecular static minimizations. A good fit results in identical coloring between

the scatter data and the background response surface. While the correct trend is captured,

higher BON33 and BON17 values lead to lower energies, a significant amount of noise is

present in the data. This noise emerges since the molecular statics results were obtained

from changing 55 parameters, and not just these two. Hence, a bootstrapping approach to

fit the linear function was implemented, as shown in Figure S3(b). This approach yields

understanding of the expected error on the fitted linear coefficients.

The coefficient (β) distributions largely depend on the randomly sampled data subset

size (nLHS) during the bootstrap analysis. In fact, for nLHS < 300, bimodal distributions

were observed for all three β−coefficients. This suggests that a sample size n ≥ 300 should

be analyzed in fitting a linear model to this property. By examining the overlaid scatter

data on the response surface, Figure S3(a), it can be appreciated that small sample sets

lead to widely divergent fits. For instance, focusing on the lower end of the surface plot

(yellow region), a significant amount of light green scatter dots can be observed (i.e., lower
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energy than predicted). The bimodal nature of the scatter data with its non-negligible over-

estimated cohesive energy leads to different linear models. Therefore, a small nLHS increases

the likelihood of biasing the regression towards outlying data.

A potential extension of this approach will be to use nonlinear surrogate models such as

Radial basis functions, Neural Networks or Kriging, trained through an automated modeling

framework,8 in order to provide more reliable representation of the functional relationships

between the outputs of interest (e.g., cohesive energy and unit cell volume) and the inter-

atomic potentials.

R2β0

βBON33 βBON17

(a) (b)

Figure S3: Surrogate modeling based techniques can be used to determine optimal param-
eterizations. (a) two-dimensional response surface for the B11CpCBC cohesive energy, and
(b) linear model coefficients determined from bootstrapped fitting.

An alternative use of these surrogate models can be their use to determine whether

important factors interact. As shown in Figure 5(a), the BON33-OFF02 plane illustrates a

clear trend between these factors and the objective of interest. Therefore, fitting the data

to different linear formulations can enable further understanding of the interaction between

factors in predicting objectives. This is shown in Figure S4.
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Figure S4: Different surrogate linear formulations showing the factors in the plane at hand
do no interact. Each subplot title describes the surrogate model used, e.g., the one in the

bottom right is U = β0 +
∑B33,A02

i=0

(
βiXi +

∑B33,A02
j 6=i βijXiXj

)
.
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Data Archive Directory Tree

A zipped file containing the required data to reproduce the results presented in the manuscript

are provided. Figure S5 shows the files contained, their location, and brief descriptions. The

dataset include MD energy minimization for each polymorph and sampled potential. The

polymorphs (ID = poly) are numbered as: 1) B11C
pCBC, 2) B11C

eCBC, 3) B12CCC, and

4) B12CBC.
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ZIP supp: Supplemental information archive

input: LAMMPS input script

B4C.in: template input file for molecular energy minimization

DGSM

POTS: ReaxxFF potentials sampled for the sensitivity analysis

5 perc: sampled potentials for ∆ = 5%

reax.dgsm-0001.txt

reax.dgsm-0002.txt

reax.dgsm-0003.txt
...

reax.dgsm-1980.txt

7-25 perc: sampled potentials for ∆ = 7.25%

reax.dgsm-0001.txt

reax.dgsm-0002.txt

reax.dgsm-0003.txt
...

reax.dgsm-1980.txt

SA DGSM.txt: compiled dataset with independent input variables and re-
sponses for the ∆ = 7.25% case

OptSearch

POTS: ReaxxFF potentials sampled for focused optimal search

reax.lhs-0001.txt

reax.lhs-0002.txt

reax.lhs-0003.txt
...

reax.lhs-1110.txt

DoE LHS.txt: compiled dataset with independent input variables and re-
sponses

misc

reaxff.template.txt: ReaxFF template with variable values replaced with cor-
responding labels

Figure S5: Schematic of the directory tree within the supp.zip archive. The archive includes
all sampled potentials (for SA and reduced domain optimization search), resulting databases,
and input file for LAMMPS minimization scheme.
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