Biomimetic Protein-Harpooning Surfaces

G.M.L. Messina¹*, C. Bonaccorso²*, A. Rapisarda², B. Castroflorio¹, D. Sciotto² and G. Marletta¹ ¹Laboratory for Molecular Surfaces and Nanotechnology (LAMSUN) at Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy University of Catania and CSGI;

² Department of Chemical Sciences, University of Catania, Viale A. Doria 6, 95125 Catania, Italy Email: grmessi@unict.it; bonaccorsoc@gmail.com.

Electronic Supplementary Information

S2	General Information
S2	Synthesis of TCC5
S2	25,27-Diallyloxy-26,28-Crown[5]-Calix[4]Arene 2
S3	11,23-Bis-Allyl-26,28-Crown[5]-Calix[4]Arene 3
S3	11,23-Bis-(3-Propyl-Thioacetate)-Crown[5]-Calix[4]Arene TACC5
S4	¹ H- and ¹³ C- NMR spectra
S7	Preparation of TCC5 SAMs
S8	Species distribution diagrams for the investigated amino acids
S9	References and notes

GENERAL INFORMATION

Reagents were purchased from Sigma Aldrich (St.Louis, MO, USA) and used as received. All reactions were carried out under a nitrogen atmosphere unless stated otherwise. Thin layer chromatography (TLC) was carried out on silica gel plates (Merck 60, F254), column chromatography was carried out on silica gel 60 (Merck, 0.063–0.200 mm).

NMR experiments were carried out in CDCl₃ on a 500 MHz spectrometer (¹H at 499.88 MHz, ¹³C at 125.7 MHz) equipped with a pulse field gradient module (Z axis) and a tunable 5 mm Varian inverse detection probe (ID-PFG); chemical shifts (δ) are expressed in ppm and are referenced to residual deuterated solvent. Two-dimensional experiments were performed using Varian standard pulse sequences. NMR data were processed using the MestReC software.

MS-ESI spectra were recorded with an Electrospray ionization mass spectra (ESI-MS) were recorded on a Finnigan LCQ Deca XP ion trap (Thermo Fischer Scientific, USA) using electrospray ionization (ESI) interface.

SYNTHESIS OF TCC5

Calix[4]arene derivative 1^1 and Tetraethylene glycole ditosylate² were obtained according to literature procedures; their reaction afforded the Calix[4]crown-5 derivative 2 fixed in 1,3-alternate conformation. Subsequent Claisen transposition allowed the migration of the allyl groups from the lower rim to the upper rim, while the calixarenic scaffold re-adopts the cone conformation. The conversion of the allyl derivative **3** to the thioester **TACC5** was achieved by the radical addition of thioacetic acid on the terminal olefin. The structures and the conformations of all the intermediates and **TACC5** were confirmed by NMR spectroscopy and MS spectrometry.

25,27-DIALLYLOXY-26,28-CROWN[5]-CALIX[4]ARENE 2

Tetraethyleneglycol-di-p-toluenesolfonate (0.35 g, 0.70 mmol) was added to a suspension of 25,27-Di(1-Allyloxy)-26,28-Dihydroxy-Calix[4]Arene **1** (0.35 g, 0.70 mmol) and Cs₂CO₃ (2.71 g, 8.3 mmol) in 100 ml of acetonitrile. The reaction mixture is refluxed for 5 h under nitrogen atmosphere. The solvent was removed under reduced pressure and 50 ml of 10% acqueous HCl solution and 50 ml of CH₂Cl₂ were added. The organic layer was separated and washed with water (2x20ml). Organic phase was dried over anhydrous MgSO₄ and the CH₂Cl₂ was removed in vacuo. The mixture was purified by column chromatography (eluent CH₂Cl₂/AcOEt=80/20) to gave 0.24 g (52%) of the desidered product **2**. ¹H-NMR (500 MHz, 300 K, CDCl₃) δ : 7,13 (4H, d, J= 7.33 Hz, Ar*H*_m); 6,98 (4H, d, J= 7.60 Hz, Ar*H*_m); 6,91 (2H, t, J= 7.33 Hz, Ar*H*_p); 6,73 (2H, t, J= 7.60 Hz, Ar*H*_p); 5,58 (2H, m, -OCH₂C*H*CH₂); 4,92 (2H, dd, J₁= 10.64 Hz, J₂= 1.66 Hz, -OCH₂CHC*H*₂); 4,76 (2H, dd, J1= 17.28 Hz, J2= 1.80 Hz, -OCH₂CHCH₂); 3,99 (4H, m, -OC*H*₂CHCH₂); 3,83 (8H,s, Ar*CH*₂Ar); 3,58 (8H, s, -*OCH*₂); 3,39 (4H, t, J= 6.22 Hz, -OCH₂); 3,29 (4H, t, J= 6.22 Hz, -OCH₂). ¹³C-NMR (125 MHz, 300 K, CDCl₃) δ : 156.43, 155.72, 134.63, 133.88, 133.53, 130.31, 129.61, 122.70, 122.59, 115.74, 72.30, 70.67, 70.47, 70.25, 69.04, 38.07. MALDI-MS: m/z = 685.20 [M+Na]⁺.

11,23-BIS-ALLYL-26,28-CROWN[5]-CALIX[4]ARENE 3

0,24 g (0.37 mmol) of **2** were suspended in 5ml of N,N-dimethylaniline. The mixture was refluxed for 3 h under nitrogen atmosphere. The solution was cooled at room temperature and poured into 25 ml of ice-water, stirred with 25 ml of HCl 37% and filtered to yield 0.19 g of product **3** (77%), that was used without further purification for the next step.

¹H-NMR (500 MHz, 300 K, CDCl3) δ : 7,63 (2H, s, ArO*H*); 6,89 (4H, s, Ar*H*_m); 6,88 (4H, d, J= 7.34 Hz, Ar*H*_m); 6,74 (2H, t, J= 7.34 Hz, ArHp); 5,98 (2H, m, ArCH₂C*H*CH₂); 5,06 (4H, m, ArCH₂CHC*H*₂); 4,42 (4H,d, J= 13.02 Hz, ArCH₂Ar); 4,10 (8H, s, -OC*H*₂); 3,96 (4H, t, J= 7.34 Hz, -OCH2); 3,87 (4H, t, J= 7.34 Hz, -OCH2); 3,34 (4H, d, J= 13.02 Hz, ArC*H*₂Ar); 3,29 (4H, d, J= 6.60 Hz, ArC*H*₂CHCH₂). ¹³C-NMR (125 MHz, 300 K, CDCl3) δ : 152.07, 151.63, 138.33, 133.29, 129.97, 128.91, 128.46, 127.98, 125.27, 115.09, 76.72, 71.11, 71.07, 70.22, 39.41, 31.18. MALDI-MS: m/z = 701.07 (100) [M+K]⁺.

11,23-BIS-(3-PROPYL-THIOACETATE)-CROWN[5]-CALIX[4]ARENE TACC5

To a solution of **3** (0.16 g, 0.27 mmol) and thioacetic acid (0.08 g, 1.1 mmol) in toluene dry (8 mL) is added a catalytic amount of AIBN. The solution is refluxed for 3 h under nitrogen atmosphere, so the solvent is removed by evaporation under reduced pressure. The organic phase is washed with H_2O and saturated NaHCO₃. The solvent was removed under reduced pressure and the mixture is purified by column chromatography (eluent Hexane/EthylAcetate 60/40) giving 0.16 g (74%) of the desidered product **TACC5**.

¹H-NMR (500 MHz, 300 K, CDCl3) δ : 7,66 (2H, s, ArO*H*); 6,89 (4H, d, J= 7.48 Hz, Ar*H*_m); 6,87 (4H, s, Ar*H*_m); 6,75 (2H, t, J= 7.48 Hz, Ar*H*_p); 4,41 (4H, d, J= 12.97 Hz, ArC*H*₂Ar); 4,10 (8H, s, - OC*H*₂); 3,96 (4H, t, J= 5.49 Hz, -OCH2); 3,87 (4H, t, J= 5.49 Hz, -OCH2); 3,33 (4H, d, J= 12.97 Hz, ArC*H*₂Ar); 2,88 (4H, t, J= 7.02 Hz, ArC*H*₂CH₂CH₂S): 2,58 (4H, t, J= 7.02 Hz, ArCH₂CH₂CH₂S); 2,34 (6H, s, -SCOCH3); 1,87 (4H, m ArCH₂CH₂CH₂S). ¹³C-NMR (125 MHz,

300 K, CDCl3) δ: 195.88, 152.05, 151.56, 133.26, 131.14, 128.91, 128.33, 127.94, 125.28, 71.10, 71.08, 70.20, 33.99, 31.33, 31.19, 30.63, 28.66, 26.91. MALDI-MS: m/z = 837.27 (100) [M+Na]⁺.

Figure S1¹H-NMR spectrum of **2** (CDCl₃, 300K)

Figure S2 ¹³C-NMR spectrum of **2** (CDCl₃, 300K)

Figure S3 ¹H-NMR spectrum of **3** (CDCl₃, 300K)

Figure S4¹³C-NMR spectrum of **3** (CDCl₃, 300K)

Figure S5 ¹H-NMR spectrum of TCC5 (CDCl₃, 300K)

Figure S6¹³C-NMR spectrum of TCC5 (CDCl₃, 300K)

PREPARATION OF CALIX[4]CROWN-5 SAM

The gold sensors were cleaned by exposure to (UV)/ozone for 10 min at atmospheric pressure in a Jeligth Instr. apparatus (λ exc of 185 nm and 254 nm). By this treatment, the surface is cleaned from traces of organic contaminants. The sensors were washed with ethanol and were dried under a stream of N₂ gas. A 0.5 mM solution of **TCC5** (C₂H₄Cl₂/CH₃OH=1:1) was prepared and an equimolar amount of KOH was added to this solution to convert the acetate group in thiol group. After 60 minute, the clean Au sensor was immersed in the solution of **TACC5** for 18 hours to form a calix monolayer on gold surface. Finally, the samples were rinsed with the solvent mixture and dried under nitrogen flux.

Figure S7. Species distribution diagrams for the investigated amino acids at different pH values.

NOTES AND REFERENCES

1 Jan Dirk Van Loon , Arturo Arduini , Laura Coppi , Willem Verboom , Andrea Pochini , Rocco Ungaro , Sybolt Harkema , David N. Reinhoudt J. Org. Chem., 1990, 55 (21), pp 5639–5646.