Development of MagneticallyActive Scaffolds as

Intrinsically-Responsive Bioreactors

Darina A Gilroy^{1,2}, Chris Hobbs^{3,4,5}, Valeria Nicolosi^{3,4,6}, Conor T Buckley^{1,3}, Fergal J O'Brien^{1,2,3}, Cathal J Kearney^{2,3} *

Supplemental 1. Evaluation of the mechanical properties of the alginate MAS. (A) Effect of reducing AAD concentration from 2.5mM to 1.25mM on Young's modulus (kPa) and magnetically-induced deformation of alginate MAS (0.75 wt% alginate; pre-lyophilisation; -20°C crosslinking) (Mean \pm SD; n = 4; *t*-test, * = p<0.05). (B) Effect of phase change from monophasic to biphasic on Young's modulus (kPa) and magnetically-induced deformation of alginate MAS (0.75 wt% alginate; pst-lyophilization; -20°C crosslinking) (Mean \pm SD; n = 4; *t*-test, * = p<0.05). (B) Effect of phase change from monophasic to biphasic on Young's modulus (kPa) and magnetically-induced deformation of alginate MAS (0.75 wt% alginate; post-lyophilization; -20°C crosslinking) (Mean \pm SD; n = 4; *t*-test, * = p<0.05).

Supplemental 2. Sample merged images of entire midplane cross section of (magnetically stimulated) alginate and collagen-microsphere MAS stained with live/dead® staining at day 7.