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MODEL AND NUMERICAL METHODS 

In this work, we consider a symmetric half cell with individual grains being 
electrodeposited on a non-reactive substrate in contact with a binary electrolyte. The 
electrostatic field is determined by the continuity equation of the current, and the 
deposition rate is governed by Butler-Volmer kinetics. The equations are solved in two 
steps: first, the electrostatic field and concentration field are updated for the given 
interfacial geometry based on the current continuity equation (and the diffusion equation, 
if considered), and then the interfacial positions are updated based on the reaction rate at 
the surface of the deposit based on the solution obtained in the first step.   



 

FIG. S1: Schematic illustration of the computational domain employed in the 
simulations. The electrolyte, deposit, and substrate regions are each identified by 
a domain parameter. The Cahn-Hilliard and Allen Cahn equations govern the 
evolution of the domain boundaries. The equations governing the potential and 
ion concentration fields are solved only in the electrolyte with the 
deposition/dissolution rate is given by Butler-Volmer kinetics imposed using the 
smoothed boundary method. The equations governing the electrolyte region is 
solved fully in three dimensions near the deposit and linked to the one-
dimensional solution far away from it. 

 

Figure S1 illustrates the configuration of the computational domain schematically. 
Each region of the domain is defined by a domain order parameter that takes the value of 
one inside and zero outside. In this manner,  ψ s  represents the substrate,  ψ l  the 
electrolyte, and each grain of the deposit corresponds to a parameter  ηi , with i ranging 
from 1 to p. Each  ηi  tracks growth or dissolution of grain i during electrodeposition. 
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Since grains cannot overlap,  ηi must not be 1 simultaneously at any point. The free 

energy functional  F  is based on the one proposed for grain growth in polycrystalline 
solids, which contains a penalty in the form of quadratic functions of  ηi  in order to 

impose this condition [1]:  

 
   
F = [mf0({ηi},ψ l ,ψ s )]

V
∫  + κ

2
∇ηi( )2

i=1

p

∑ +κ
2

∇ψ l( )2
  (S1) 
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 It should be noted that this free energy functional does not represent the thermodynamics 
of the system, but it is rather employed as a part of the numerical method is to track the 
evolution of the deposit morphology. Therefore, the parameters that enter into the free 
energy, as well as the evolution equation based on it, are purely numerical and should not 
be interpreted physically. For example, the diffuse interface thickness is set to ensure that 
the interface is numerically resolved for the given resolution, and the mobility is set such 
that the interfacial evolution is described by the local normal velocity and the order 
parameter profiles through the diffuse interfaces remain approximately that of the steady 
state solution. Furthermore, Moelans et al. demonstrated that   γ = 1.5  is a choice that 

maintains the sum of the order parameters to be approximately one through interfaces and 
triple junctions [1]. The parameter κ controls the width of the boundaries between 
different regions. For a planar interface (or grain boundary), the solutions follow a 
hyperbolic tangent profile:  
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where the width of the diffuse interface is given by 
  
2δ = 2 2κ

m
. In our simulations, we 

ensure that 5-6 grid points resolve this distance. The values of the numerical parameters 
are summarized in Table S1.   



Since the substrate is assumed to be stationary, its order parameter,  ψs , is 
assumed to be constant. For the domain parameters of the deposits,  ηi , we employ the 

Cahn-Hilliard equation for conserved dynamics to ensure mass conservation of the 
deposited material. The deposition is treated via a source term: 
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where  v  is the local growth velocity of the interface, calculated from the Butler-Volmer 
equation discussed below.  

Since only the electrochemical reaction occurs only on the surface of the deposit 
exposed to the electrolyte, we write the vector expression for the velocity in terms of the 
normal (scalar) velocity,  v , and the unit normal of the surface calculated as a function of 

 ψ l ,  
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Thus, the equation governing  ηi  becomes  
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The velocity of the interface is related to the reaction current density   irxn  through the 

mass conservation condition. During a time  Δt , an element of the deposit surface of area 
 A  would sweep a volume of AvΔt , and mass conservation leads to 

 
  

irxn

z+F
AΔt =CsvAΔt ,  (S7) 

where  Cs  is the density of atoms in the metal electrode in the unit of mol per volume, and 

 z+  is the charge number of the positive ion. By rearranging Eq. S7, we obtain 

 
  
v = irxn

Csz+F
  (S8) 

Next, we assume that the electrolyte is simply displaced by the growing deposit; 



thus, the Allen-Cahn (nonconserved dynamics) equation is used to evolve  ψ l :  
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 The electrostatic potential, φ , in the electrolyte is assumed to be given by the 

solution to the continuity equation for the current by assuming a dilute binary electrolyte 
[4]. The current continuity is given by  
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The flux   
!
J+  of positive ions is given by  
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where  c+  is the concentration of positive ions,  D+  is their diffusivity, and Einstein’s 

relation between diffusivity and mobility is used to eliminate the mobility. An equivalent 
equation holds for the negative ions. Writing current continuity explicitly and making use 
of the condition of electroneutrality   z+c+ + z−c− = 0 , we have  
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where  c+  is the concentration,  D−  is the diffusivity, and  z−  is the charge number of the 

negative ions. For the scope of the results presented in this paper, which focuses on the 
development of the instabilities in the absence of concentration depletion (e.g., slow 
electrodeposition or early stages of rapid electrodeposition), we assume that the 
concentration of ions is constant, so the first term in the previous equation is ignored. 
Thus, the conductivity is linearly related to the concentration of positive ions via

  κ = z+c+F 2(z+D+ − z−D− ) / RT . In the main text,  Cl  is used to denote the concentration 
of positive ions in the electrolyte, i.e.,  Cl = c+ , resulting in Eq. 3 in the main text. 

Equation 3 is must be solved with a boundary condition on flux at the reactive 
surface according to the local reaction rate. As the deposit grows or dissolves, the region 
occupied by the electrolyte, and thus the reactive surfaces, evolves. As described above, 
this region is defined by   ψ l = 1 , and  ψl  is updated via Eq. S9 to follow its evolution. We 

employ the smoothed boundary method [2], in which the governing equations are 



reformulated to satisfy the boundary conditions are automatically. The smoothed 
boundary method equation for the current is written as 
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which then becomes 
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The equations are discretized by finite differences. The equations for  ηi  are 

solved using a semi-implicit time stepping scheme, in which only the variable for which 
the rate is calculated for is treated implicitly. The equation for  ψ l  is solved explicitly. 

The electrostatic potential is solved using the method of successive over-relaxation, and 
the galvanostatic conditions are implemented by iteratively adjusting the potential 
boundary condition. To reduce the computational cost, the electrolyte domain contains 
three-dimensional computational domain where the equations are solved fully, which is 
necessary near the deposit surfaces, and one-dimensional computational domain away 
from the deposits, where one-dimensional solution accurately describes the solution. 

 

NUMERICAL AND MATERIAL PARAMETERS  

Material parameters were chosen to correspond to typical values for Li 
electrodeposition in battery applications and are summarized in Table I, along with the 
numerical parameters. In all simulations presented in this paper, the discretization of 
space is uniform with grid spacing given by   Δx = 0.1µm , and the time step is constant 
and is set to   Δt = 0.1s . The three-dimensional computational domain has a height of 20 

µm, which is linked to the one-dimensional computational domain of 900 µm.  

 

 



TABLE I: Material and Numerical Parameters 
Symbol Description Value 

 z  Charge number,  z = z+ = −z−   1 

 D+  Diffusivity, positive ions   10−6 cm2 / s  a 

 D−  Diffusivity, negative ions  D− = D+  

  i0  Exchange current density   1~ 103mA/cm2  

β  Symmetry factor   0.5  

 Cs  Molar density, electrode   76.93 M  

 Cl  Ion concentration, electrolyte   0.4 M  

 Δx     Δx = 0.1µm  

 Δt   0.1 s 

 
Mηi

 Cahn-Hillliard  ηi  mobility   0.1 µm2 / s  

 
Mψ l

 Allen-Cahn  ψ l  coefficient   10−2 / s  

δ  Diffuse interface width (numerical)   0.28 µm  

a Set to match conductivity data from Ref. [3] 

 

OVERPOTENTIAL AT THE SURFACE OF THE DEPOSIT  

Figure S2 shows the overpotential, defined as  φ −φw , at the surface of the deposit for the 

simulation depicted in Fig. 3 in the main text. The 2D plot shows the values of this 
overpotential as a function of the height of the deposit. This figure illustrates that 
variations in overpotential at different points of the surface increase with surface height 
and that their variation with height is of the order of magnitude of the potential drop over 
a comparable distance in the electrolyte.  



 

FIG. S2: Overpotential  φ −φw at the deposit surface in eV for the deposit depicted 

in Fig. 3 in the main text. The upper-left graph is the scatter plot of the value of 
the overpotential at each grid point at the surface as a function of the height. Far 
from the deposit, the electrostatic potential varies linearly with the distance to the 
substrate, and the extension of that linear regime is shown in the plot.  
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