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Figure S1. (a) The 1H NMR spectra for the purified PDMS(10)-PTMPM(X) diblock copolymers dissolved in deuterated chloroform (CDCl3). Here, X corresponds to the number-average molecular weight of the PTMPM block in kg mol-1. (b) The 1H NMR spectra of the PDMS (10)-PTMA(X) diblock copolymers after the radical was quenched by treatment with hydrazine. Now X corresponds to the number-average molecular weight of the PTMA block in kg mol-1.
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Figure S2. (a) The ATR-FTIR spectra of PDMS-PTMPM powders demonstrate the distinct PDMS functionality (i.e., Si-O) and the carbonyl group (i.e., C=O) from the PTMPM block. Note that the relative ratio of the C=O signal to the Si-O signal increases with increasing PTMPM content in the diblock copolymers. (b) The oxidized PDMS-PTMA samples show an increase in absorption at 1467 cm-1; this corresponds to the formation of the radical oxygen pendant group.
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Figure S3. The EPR spectrum of the small molecule TEMPO-OH in toluene at 2 mg mL-1. The integrated absorption intensity is used to determine the radical fraction in PDMS-PTMA. The chemical structure of the TEMPO-OH molecule is inset into the image.
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Figure S4. (a) Thermogravimetric analysis (TGA) curves of the PDMS-PTMA diblock copolymers. Note that the molecules are almost completely degraded by 420 °C. (b) The TGA profile of the PDMS-PTMA diblock copolymers in the area of the glass transition temperature of the PTMA moiety. Note that significant mass loss begins to occur at ~210 °C. This causes thermal annealing of the PDMS-PTMA block polymers to be difficult.
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Figure S5. AFM phase images of (a) PDMS(10)-PTMPM(10), (b) PDMS(10)-PTMPM(36), and (c) PDMS(10)-PTMPM(51) thin films after annealing with chloroform vapors for 24 h at room temperature. There is no observed self-assembly in the PDMS-PTMPM diblock copolymer systems.
