Supporting Information

S1. Computational Details

Our Kohn-Sham (KS) density functional theoryS1-S2 plus U (DFT+U)S3 calculations used the Perdew, Burke, and Ernzerhof exchange-correlation functional.S4 We employed Ueff=4.3 eV for Fe3+ from Mosey et al.S5 originally determined from first-principles for Fe2O3. We previously validated the transferability of this value for LaFeO3.S6 We used the Vienna ab initio Simulation Package (VASP)S7-S9 version 5.2.2 for these spin-polarized calculations. Interactions of the nuclei and frozen core electrons with the valence electrons were modeled using the projector augmented wave (PAW) methodS10 where the PAW potentials were taken from the VASP libraryS11 for La (5s25p66s25d1 valence), Fe (4s23d6 valence) and ‘standard’ O (2s22p4 valence). We used 2 × 2 × 2 and 4 x 4 x 4 Monkhorst-PackS12 k-point meshes for the 160-atom and 40-atom supercells, respectively. The planewave basis was cut off at a kinetic energy of 750 eV. These parameters converge the total energies to 5 meV/formula unit. Relaxations were performed with Gaussian smearing (σ = 0.05 eV), and we refined the final energies using the tetrahedron method with Blöchl corrections.S13 The overall magnetism was fixed at 1 μB when VLa/// is present and 0 μB without VLa///. The migration pathway was obtained using the climbing image nudged elastic band (CINEB) methodS14-S16 as implemented in the VASP transition state theory tools from the University of Texas.S17 Vibrational frequencies were obtained by constructing the Hessian matrix from finite displacements (0.02 Å) of all atoms around the equilibrium oxygen vacancy geometry and the transition state geometry in the 40-atom supercell. Charge analysis was carried out using Bader’s “Atoms in Molecules” approachS18 with the Bader code provided by Professor Henkelman’s group at the University of Texas.S17,S19

S2. O2 Molecule Free Energy


The free energy of the oxygen molecule (
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) in its triplet ground state is required when calculating the free energies of reactions 3, 4, and 5 (see main text). We calculate the thermal contributions to 
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using the ideal gas, rigid-rotor, and harmonic oscillator approximations.S20 These contributions are added to the energy of the O2 molecule obtained with DFT-GGA leading to equations S1-S3 expressing 
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as a function of temperature. 
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In these expressions, T is the absolute temperature, Cp is the heat capacity at constant pressure and S is the entropy per molecule of O2. The remaining quantities are defined in table S1. Using these parameters, we calculate 
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 for T=600-1200 K (Fig. S1). This quantity, as a function of temperature, is used to determine ΔG for the different reactions throughout the main text.

Table S1. Physical quantities for computing the properties of the O2 molecule using equations S1-S3.

	quantity
	Definition
	value

	re
	The DFT-GGA equilibrium bond length for O2 
	123.2 pm
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	The total energy (DFT-GGA) of O2 at re
	-9.874 eV
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	The harmonic frequency of the O=O bond in O2
	4.71 × 1013 Hz

	kB
	Boltzmann’s Constant
	1.38 × 10-15 J/K

	h
	Planck’s constant.
	6.626 × 10-34 J s

	mO
	The mass of the oxygen atom
	2.66 × 10-26 kg

	P
	The absolute pressure (1 atm)
	101325 N/m2

	gelec
	The degeneracy of the ground state (triplet for O2)
	3

	I
	The moment of inertia of O2
	2.02 × 10-46 kg m2
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FIG. S1. The free energy of the O2 molecule as a function of temperature from 600-1200oC.

S3. Lanthanum Metal Reference Calculations


Under oxygen-poor conditions, the reference state for La is its pure metallic state. La undergoes two phase changes prior to melting (Tmelt=918oC).S21 In this case, we report calculations for the dhcp (α), fcc (β), and bcc (γ) phases and compare the computed structural parameters to experimental values (table S2). We obtain the correct phase ordering for La, with Eα < Eβ (α(β transition occurs at 310oC) and Eβ < Eγ (β(γ transition occurs at 865oC). We obtain lattice constants within 0.8% of experiment, and our bulk modulus value is close to experiment.S21 Note that the energy difference between α and β is 8 meV/atom indicating that choosing either phase as a reference for La is reasonable. Since solid oxide fuel cells operate above 310oC, we choose the β phase as a reference for reaction 2 in the main text.

Table S2. Calculated quantities for La in different phases obtained with DFT-GGA calculations. Experimental data from ref. S21 in parentheses (when available).

	Phase
	Energy (eV/atom)
	Lattice Constants (Å)
	Bulk Modulus, B0 (GPa)

	α (dhcp)
	-4.929
	a: 3.765 (3.774)

c: 12.079 (12.171)
	24.0 (27.9)

	β (fcc)
	-4.921
	a: 5.285 (5.303)
	25.8 (--)

	γ (bcc)
	-4.806
	a: 4.226 (4.26)
	25.9 (--)


These calculations were performed with VASP using the PBE functional and the PAW potential for La described earlier. We used a planewave basis set truncated at 750 eV and 9 × 9 × 3 ((-point-centered), 7 × 7 × 7 (Monkhorst-Pack), and 9 × 9 × 9 (Monkhorst-Pack) k-point meshes for α-, β-, and γ-La, respectively. We used the 4-atom cubic fcc cell for β-La and the two-atom cubic bcc cell for γ-La. These parameters converged the total energies to 1 meV/atom. Relaxations were performed using first-order Methfessel-Paxton smearingS22 (σ = 0.20 eV) which ensured that the electronic entropy remained below 1 meV/atom. Final energies were refined with the tetrahedron method with Blöchl corrections.


S4. La2O3 Reference Calculations


Under oxygen-rich conditions, the formation of a lanthanum vacancy in LaFeO3 involves oxidizing the material and forming La2O3 as a product (reaction 3 in the main text). We modeled the hexagonal phase of La2O3 which exists above 600oC.S23 As with pure La, we compare our results to experiment (table S3) and find very good agreement for the structural parameters. La2O3 is a large-gap (6.4 eV)S24 insulator, and we find that DFT-GGA significantly underestimates the band gap of this material. However, our results are consistent with previously reported DFT-GGA eigenvalue gaps,S25 which are too low due to the lack of derivative discontinuity in the exchange-correlation potential and other known errors in pure DFT. However, the gap is large enough to ensure a proper electronic structure of an insulator, which is all that matters in this application. These results confirm the appropriateness of our model for La2O3.

Table S3. Physical quantities for hexagonal La2O3 obtained with DFT-GGA calculations compared with experimental values. 

	Quantity
	Calculated (DFT-GGA)
	Experimental Value

	Lattice constants
	a: 3.94 Å
	a: 3.94 Å a

	
	c: 6.18 Å
	c: 6.13 Å a

	Oxygen position parameters
	u*: 0.247
	u*: 0.245 a

	
	v*: 0.355
	v*: 0.355 a

	Bulk modulus, B0
	119 GPa
	113 GPa b

	Band gap, Eg
	3.8 eV
	6.4 eV c

	Energy
	-41.920 eV/f.u.
	----


a. Ref. S26

b. Ref. S27

c. Ref. S24


The resulting density of states shows that La2O3 is a ligand-to-metal charge transfer conductor (Fig. S2). The valence band maximum consists of O 2p states while the conduction band minimum consists of La 4f states. Both nonmagnetic and ferromagnetic initial conditions converged to a nonmagnetic ground state. This result is consistent with the experimental observation of diamagnetism in La1.9Co0.1O3 and the absence of ferromagnetism in La2O3.S28
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FIG. S2. Projected density of states for La2O3. The minority and majority spin channels are symmetric because the solution is nonmagnetic. This material is a ligand-to-metal charge transfer insulator because the valence band maximum contains O 2p states while the conduction band minimum consists of La 4f states.

We performed spin-polarized DFT calculations of hexagonal La2O3 using VASP version 5.2.2. The planewave basis set was truncated at 750 eV, and we employed a 12 × 12 × 8 Monkhorst-Pack k-point mesh. Relaxations were performed with Gaussian smearing (σ = 0.05 eV) until the atomic forces were all below 0.01 eV/Å, and we refined the final energies with the tetrahedron method with Blöchl corrections. These numerical parameters converge the total energy to 5 meV/formula unit. We tried both nonmagnetic and ferromagnetic initial guesses to see if a magnetic state would be obtained, but all initial conditions converged to the same nonmagnetic ground state.

S5. Geometrical Distortions Induced by VLa/// Formation


Creating a lanthanum vacancy (VLa///) involves removing a neutral La atom from the crystal. This has two effects: it introduces holes into the lattice (see the main text) and it leaves the crystal without a large, highly charged cation. The latter effect has the potential to lead to either global strain (by changing the equilibrium volume of the supercell) or local strain (by changing the atomic positions, bond lengths, and bond angles near the vacancy site). We briefly explore both effects in the following paragraphs.


Since removing a La atom leaves behind significant empty space in the lattice, we must consider the whether the cell wants to expand or contract to minimize the impact of the vacancy. Although we only reported results for fixed lattice constants (see main text), we performed a relaxation of the lattice in the presence of a VLa/// and found that it induces a small decrease in the cell volume (0.5%). The small size of this contraction can be seen in the lattice constants and angles between the lattice vectors (table S4). Correspondingly, the contraction stabilizes the cell by a negligible amount (36 meV for the entire 160-atom cell). 

Table S4. Lattice constants and angles for the 160-atom LaFeO3 supercell without VLa/// and the same cell optimized in the presence of VLa///. 

	Quantity
	Host
	Optimized with VLa///

	Length of Lattice Vector a1
	14.775 Å
	14.761 Å

	Length of Lattice Vector a2
	14.775 Å
	14.766 Å

	Length of Lattice Vector a3
	14.775 Å
	14.763 Å

	Angle Between a1 and a2
	82.07o
	81.96o

	Angle Between a1 and a3
	115.34o
	115.31o

	Angle Between a2 and a3
	135.23o
	135.42o


While the vacancy has a minute effect on the cell geometry and volume, the VLa/// induces local strain. VLa/// repels the nearby oxygen ions (they no longer have the strong electrostatic attraction to the La ion). The following discussion utilizes data found in tables S5 and S6. Overall, of the 12 oxygen atoms surrounding the VLa/// site, nine move away (by as much as 0.26 Å) while 3 move toward the vacant site (by at most 0.03 Å). The ions which move inward are the oxygen ions which were most distant from the La site in the host geometry. The Fe-O bonds around the La vacancy become shorter by 0.001 up to 0.076 Å. The Fe-O-Fe bond angles (defining how the octahedra tilt against one another) show little change except for the angles centered on the 3 oxygen ions closest to the La ion in the host geometry. Those three angles increase by 15-17o (from ~154o to ~170o). This evidence suggests that the VLa/// induces significant local strain on the lattice leading to some of the nearby octahedra becoming less tilted and shrinking the Fe-O bonds around the vacancy. This result is analogous to the situation of substituting Sr for La (which leads to shorter Fe-O bonds and less tilted octahedra).

Table S5. Atomic displacements and Fe-O bond lengths (in Ångstroms) around the VLa/// site before and after VLa/// formation (for VLa/// formation with the host lattice vectors).

	Quantity
	Before VLa///
	After VLa///
	Change Upon VLa/// Formation

	O-La(VLa///) Distances
	3.17 
	3.26 
	+0.09 

	
	3.37 
	3.35 
	-0.02 

	
	2.41 
	2.65 
	+0.24 

	
	3.37 
	3.35 
	-0.02 

	
	2.44 
	2.70 
	+0.26 

	
	2.55 
	2.77 
	+0.22 

	
	2.65 
	2.85 
	+0.20 

	
	2.81 
	2.94 
	+.013 

	
	2.81 
	2.94 
	+0.13 

	
	3.21 
	3.18 
	-0.03 

	
	2.65 
	2.85 
	+0.20 

	
	2.44 
	2.70 
	+0.26 

	
	
	
	

	Fe-O Bond Lengths
	2.02 
	2.02 
	-0.00 

	
	2.03 
	2.00 
	-0.03 

	
	2.03 
	2.02 
	-0.01 

	
	2.03 
	1.94 
	-0.09 

	
	2.03 
	1.94 
	-0.09 

	
	2.03 
	2.03 
	-0.00 

	
	2.02 
	2.02 
	-0.00 

	
	2.03 
	2.00 
	-0.03 

	
	2.02 
	1.99 
	-0.03 

	
	2.03 
	1.99 
	-0.04 

	
	2.02 
	1.99 
	-0.03 

	
	2.03 
	1.98 
	-0.05 

	
	2.03 
	1.98 
	-0.05 

	
	2.02 
	1.95 
	-0.07 

	
	2.03 
	1.98 
	-0.05 

	
	2.02 
	1.95 
	-0.07 

	
	2.02 
	1.98 
	-0.04 

	
	2.03 
	1.98 
	-0.05 

	
	2.03 
	2.01 
	-0.02 

	
	2.03 
	2.01 
	-0.02 

	
	2.03 
	1.98 
	-0.05 

	
	2.02 
	1.98 
	-0.04 

	
	2.03 
	1.98 
	-0.05 


Table S6. Fe-O-Fe bond angles (in degrees) before and after VLa/// formation.

	Quantity
	Before VLa///
	After VLa///
	Change Upon VLa/// Formation

	Fe-O-Fe Bond Angles
	154.7
	152.2
	-2.5

	
	154.7
	171.1
	16.4

	
	154.7
	171.4
	16.7

	
	154.7
	152.2
	-2.5

	
	154.7
	152.9
	-1.8

	
	153.8 
	153.1
	-0.7

	
	154.7
	152.9
	-1.8

	
	153.8 
	169.0
	15.2

	
	154.7
	152.8
	-1.9

	
	153.8
	150.9
	-2.9

	
	154.7
	152.7
	-2.0
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